
Oracle ® Application Server

Performance and Tuning Guide

Release 4.0.8.1

September 1999

Part No. A60120-03

Oracle Application Server Release 4.0.8.1 Performance and Tuning Guide

Part No. A60120-03

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Authors: Sanjay Singh, Janice Nygard, Francisco Abedrabbo

Contributors: Sharon Malek, Bruce Irvin, Alice Chan, Carol Orange, Rachita Atal, Bryan Burns, Thomas
Van Raalte, Kiri Burnovas, Miranda Padgett

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface ... vii

1 Performance Overview

Performance Terms ... 1-2
Oracle Application Server Overview.. 1-2
What is Performance Tuning? .. 1-2

Response Time .. 1-3
System Throughput.. 1-4
Wait Time... 1-4
Critical Resources ... 1-5
Effects of Excessive Demand... 1-6
Adjustments to Relieve Problems .. 1-7

Setting Performance Targets ... 1-8
Setting User Expectations.. 1-8
Evaluating Performance .. 1-9
Performance Methodology.. 1-9

Roadmap to Improving Performance.. 1-11
Architecture.. 1-12

HTTP Listener Layer .. 1-13
Oracle Application Server Layer .. 1-14
Applications Layer ... 1-14
Multi-node Architecture.. 1-15

Distributing Load Among Multiple Nodes... 1-16
Distributed versus Single-Node Configurations.. 1-16
New Performance Features in Oracle Application Server 4.0.8 ... 1-17
 iii

2 Designing Performant Applications

Java-Based Applications .. 2-1
Database Connectivity ... 2-1
JServlet Applications .. 2-2
Enterprise Java Beans invoked by JServlet Applications.. 2-19

PL/SQL Applications.. 2-29
Database Access Descriptors (DADs) .. 2-29
Nested Tables .. 2-29

3 Sizing and Configuration

Installation Requirements... 3-2
Sizing your Hardware and Resources... 3-2
Determining User Population .. 3-3
Determining CPU Requirements... 3-3
Determining Memory Requirements.. 3-3

Memory for Non-OAS Software and Operating System .. 3-3
Fixed Memory Cost .. 3-4
Variable Memory Requirements .. 3-5
Number of Concurrent Executing Users ... 3-6
Cost per JVM for Java- based applications.. 3-6

Performance Factors.. 3-7
Insufficient Memory ... 3-7
Insufficient CPU Resources ... 3-7
Insufficient I/O ... 3-8
Network Constraints .. 3-9
Software Constraints .. 3-9

4 Tuning Oracle Application Server Components and Parameters

Tuning Processes ... 4-2
File Descriptors per Process .. 4-2
Distributing the Authentication Server Processes ... 4-2

Tuning Listeners.. 4-4
Multiple Listeners ... 4-4
Files in a Directory.. 4-4
 iv

Tuning Web Listeners .. 4-4
Tuning Cartridges ... 4-10

Load Balancing Schemes ... 4-10
Changing the Load Balancing Scheme .. 4-10
Priority-Based Load Balancing ... 4-11
Min/Max Based Load Balancing.. 4-13

Tuning Logging ... 4-15
CLF and XLF Logging.. 4-15
System Logging... 4-17
Monitoring Error and Log Files.. 4-17

Tuning Security ... 4-18
Authentication Server Modes ... 4-18

Tuning Operating System and Network .. 4-18
TCP Tuning ... 4-18

5 Monitoring Performance Statistics

The oasomo Utility ... 5-1
Overview.. 5-2
Running oasomo... 5-2
oasomo Walk Through .. 5-3
Parts of the oasomo Window.. 5-6
Metric List .. 5-8
Tiered Table... 5-9
Metrics Available for Monitoring... 5-11
Displaying Charts... 5-15
Viewing EJB and ECO Metrics ... 5-17

The flexmon Utility... 5-27
Overview.. 5-27
Description of Command Line Interface... 5-27
Syntax ... 5-27
Arguments ... 5-28
Usage Examples .. 5-28

Terminology ... 5-32
 v

A Operating System Tuning

Monitoring Processor Use ... A-1
Using the sar Utility.. A-1
Using the mpstat Utility... A-2

Harnessing the Benefits of Solaris 2.6... A-3

Index
 vi

Preface

Audience
This book is for administrators who want to analyze and tune Oracle Application
Server Release 4.0 for optimum performance.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03
 vii

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
viii

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.
ix

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
x

Reader’s Comment Form

Oracle Application Server Performance and Tuning Guide

Part No. A60120-03
Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone num-
ber below:

Thank you for helping us improve our documentation.
xi

xii

 Performance Ove
1

Performance Overview

This chapter is intended to give you a brief overview of Oracle Application Server
architecture and an introduction to tuning concepts.

Contents
■ Performance Terms

■ Oracle Application Server Overview

■ What is Performance Tuning?

■ Setting Performance Targets

■ Setting User Expectations

■ Evaluating Performance

■ Performance Methodology

■ Architecture

■ Distributing Load Among Multiple Nodes

■ Distributed versus Single-Node Configurations

■ New Performance Features in Oracle Application Server 4.0.8
rview 1-1

Performance Terms
Performance Terms
The following list describes performance terms used in this book:

Oracle Application Server Overview
The Oracle Application Server is a sophisticated and highly tunable software prod-
uct. Its flexibility allows you to make small adjustments that affect performance. By
tuning your system, you can tailor its performance to best meet your needs. The
intent of this chapter is to give you a general description of Oracle Application
Server for performance and tuning purposes only. For a complete description of the
product, see the Oracle Application Server Overview.

What is Performance Tuning?
Performance must be built in! Performance tuning cannot be performed optimally
after a system is put into production. To achieve performance targets of response
time, throughput, and constraints you must consider tuning for optimal perfor-
mance during the phases of application analysis, design, and implementation. This
section introduces some fundamental concepts:

■ Response Time

■ System Throughput

■ Wait Time

■ Critical Resources

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Request latency The time required to process a request.

Request throughput The number of requests processed per unit of time.

Scalability The ability to handle increasing numbers of requests with-
out adversely affecting latency and throughput.
1-2 Oracle Application Server Performance and Tuning Guide

What is Performance Tuning?
Response Time
Because response time equals service time plus wait time, you can increase perfor-
mance in two ways:

■ By reducing wait time

■ By reducing service time

Figure 1–1 illustrates ten independent tasks competing for a single resource.

Figure 1–1 Sequential Processing of Multiple Independent Tasks

In this example only task 1 runs without having to wait. Task 2 must wait until task
1 has completed; task 3 must wait until tasks 1 and 2 have completed, and so on.
(Although the figure shows the independent tasks as the same size, the size of the
tasks will vary.)

Note: In parallel processing, if you have multiple resources, then more resources
can be assigned to the tasks. Each independent task executes immediately using its
own resource: no wait time is involved.

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10
 Performance Overview 1-3

What is Performance Tuning?
System Throughput
System throughput equals the amount of work accomplished in a given amount of
time. Two techniques of increasing throughput exist:

■ Get more work done with the same resources (reduce service time).

■ Get the work done quicker by reducing overall response time. To do this, look
at the wait time. You may be able to duplicate the resource for which all the
users are waiting. For example, if the system is CPU bound you can add more
CPUs. Keep in mind that distributing the load among multiple nodes should
only be used when you are anticipating significant loads on the primary node.

■ Schedule small tasks first

Wait Time
While the service time for a task may stay the same, wait time will go up as conten-
tion increases. If many users are waiting for a service that takes 1 second, the tenth
user must wait 9 seconds for a service that takes 1 second.

Figure 1–2 Wait Time Rising with Increased Contention for a Resource

Contention for a Resource

W
ai

t
T

im
e

1-4 Oracle Application Server Performance and Tuning Guide

What is Performance Tuning?
Critical Resources
Resources such as CPUs, memory, I/O capacity, and network bandwidth are key to
reducing service time. Added resources increases throughput and reduces response
time. Performance depends on the following:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows that as the number of units requested rises, the time to service
completion rises.

Figure 1–3 Time to Service Completion vs. Demand Rate

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
o

m
p

le
ti

o
n

 Performance Overview 1-5

What is Performance Tuning?
To manage this situation, you have two options:

■ You can limit demand rate to maintain acceptable response times.

■ You can add resources, for example, another CPU or disk.

Effects of Excessive Demand
Excessive demand gives rise to:

■ Greatly increased response time

■ Reduced throughput

If there is any possibility of the demand rate exceeding the achievable throughput,
a demand limiter is essential. Look at the possible demands that may be placed on
the system and design the application or configure the system with these con-
straints in mind.

Figure 1–4 Increased Demand/Reduced Throughput

Demand Rate

T
h

ro
u

g
h

p
u

t

1-6 Oracle Application Server Performance and Tuning Guide

What is Performance Tuning?
Adjustments to Relieve Problems
Performance problems can be relieved by making the following adjustments:

adjusting unit consumption Some problems can be relieved by reducing
resources per transaction or by reducing
the service time. You can take other
approaches, such as reducing the number
of I/Os per transaction.

adjusting functional demand Other problems can be abated by
rescheduling or redistributing the work.

adjusting capacity Problems may also be relieved by
increasing or reallocating resources. If you
start using multiple CPUs, going from a
single CPU to a symmetric multiprocessor,
you will have multiple resources available.
 Performance Overview 1-7

Setting Performance Targets
Setting Performance Targets
Whether you are designing or maintaining a system, you should set specific perfor-
mance goals so that you know when to modify for optimal effectiveness. You can
needlessly spend time tuning your system without significant gain if you attempt
to alter parameters without a specific goal.

When designing your system, set a specific goal: for example, an order entry
response time of less than three seconds. If the application does not meet that goal,
identify the bottleneck causing the slowdown (for example, I/O contention), deter-
mine the cause, and take corrective action. During development, you should test
the application to determine if it meets the designed performance goals before
deploying the application.

Tuning usually involves a series of trade-offs. Once you have determined the bottle-
necks, you may have to modify performance in some other areas to achieve the
desired results. For example, if I/O is a problem, you may need to purchase more
memory or more disks. If a purchase is not possible, you may have to limit the con-
currency of the system to achieve the desired performance. However, if you have
clearly defined goals for performance, the decision on what to trade for higher per-
formance is simpler because you have identified the most important areas.

Setting User Expectations
Application developers, database administrators, and system administrators must
be careful to set appropriate performance expectations for users. When the system
carries out a particularly complicated operation, response time may be slower than
when it is performing a simple operation. In cases like this, the slower response
time is not unreasonable.

If an administrator should promise 1 second response time, consider how this
might be interpreted. The administrator might mean that the operation would take
1 second in a web server--and might well be able to achieve this goal. However,
users performing an operation or transaction over a network might experience a
delay of a couple of seconds due to network traffic: they will not receive the
response they expect in 1 second.
1-8 Oracle Application Server Performance and Tuning Guide

Performance Methodology
Evaluating Performance
With clearly defined performance goals, you can readily determine when perfor-
mance tuning has been successful. Success depends on the functional objectives
you have established with the user community, your ability to objectively measure
whether or not the criteria are being met, and your ability to take corrective action
to overcome any exceptions. The rest of this tuning manual describes the methodol-
ogy and process of designing applications for performance tuning, with informa-
tion about diagnostic tools and the types of corrective actions you can take.

Administrators who are responsible for solving performance problems must keep a
wide view of the all the factors that together determine response time. The per-
ceived area of performance problems is frequently not the actual source of the prob-
lem. Users in the preceding example might conclude that there is a problem with
Oracle Application Server, OAS, whereas the actual problem is with the network.
Administrators must monitor the network, disk, CPU, and so on, to find the actual
source of the problem--rather than simply assume that all performance problems
stem from OAS.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of
loads, you can conduct objective scalability studies and from these predict the
resource requirements for load volumes you may anticipate in the future.

Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjusting. The first step in performance tuning is to determine the goals
you need to achieve and to design effective usage of available technology into your
applications with your goals in mind. After implementing your system, it is neces-
sary to periodically monitor and adjust your system For example, you might want
to ensure that 90% of the users should experience response times no greater than 5
seconds and the maximum response time any user should see is 20 seconds. Usu-
ally, it’s not that simple. Your application may consist of a variety of operations,
each with differing characteristics and acceptable response times. You will need to
determine the acceptable response time for each potential operation and then esti-
mate the likely mix of operations you expect from incoming users.
 Performance Overview 1-9

Performance Methodology
Figure 1–5 Adjusting Capacity and Functional Demand

You will also need to determine variances in the load at different times. For exam-
ple, users might access the system heavily between 9:00am and 10:00am and then
again between 1:00pm and 2:00pm. If your peak load occurs on a regular basis, for
example, daily or weekly, the conventional wisdom is to configure and tune sys-
tems to meet your peak load requirements. The lucky users who access the applica-
tion in off-time will typically achieve better response times than your peak-time
users. If your peak load is infrequent, you may be willing to tolerate higher
response times at peak loads for the cost savings of smaller hardware configura-
tions.

Setting performance goals for new applications can be very difficult, because
you’re often guessing about the number of users who will be accessing the system
and the operations those users will execute. If you’re migrating an application from
an older version of Oracle Application Server, it’s slightly easier because you have
an idea of what to expect. The number of users could increase unexpectedly, or
users could start using new features of your application more heavily.

Regardless of whether you’re starting from scratch or migrating an existing applica-
tion, you will need to set some goals for performance, monitor your system over
time, and adjust for growth or changes.

Time

F
u

n
ct

io
n

al
 D

em
an

d

9:00 10:30 1:00 2:30
1-10 Oracle Application Server Performance and Tuning Guide

Performance Methodology
Roadmap to Improving Performance
The process of performance tuning can be divided into a few basic areas:

■ Application design: How to write applications that efficiently utilize hardware
resources and handle increasing numbers of users effectively. For more informa-
tion, see Chapter 2, “Designing Performant Applications”.

■ Sizing and configuration: How much hardware do you need to support your
performance goals. For more information, see Chapter 3, “Sizing and Configu-
ration”.

■ Parameter Tuning: How to set configurable parameters to achieve the best per-
formance for your application. For more information, see Chapter 4, “Tuning
Oracle Application Server Components and Parameters”.

■ Performance Monitoring: How to determine what hardware resources are
being used by your application and what response time your users are experi-
encing. For more information, see Chapter 5, “Monitoring Performance Statis-
tics”.

■ Troubleshooting: How to diagnose why an application is using more hardware
resource than expected, or why the response time is greater than the desired
goals.

■ Since many Oracle Application Server applications include access to an Oracle
database, we recommend consulting the Oracle RDBMS Tuning Guide (check
reference) for guidelines on database performance tuning.
 Performance Overview 1-11

Architecture
Architecture
Oracle Application Server can be used on a single, stand-alone machine or in a dis-
tributed environment among several machines. In a multiple node environment,
the workload can be distributed, and performance can be greatly improved.
Figure 1–6 shows the architecture of Oracle Application Server.

Figure 1–6 Oracle Application Server architecture

Li
st

en
er

D
is

pa
tc

he
r

HTTP Listener
Layer

Oracle Application Server
Layer Applications

Layer

ORB Components

ORB

A
da

pt
er

Auth Host
Server

RM Proxy

Resource
Manager

OAS Components

Factory

Cartridge Server

cartridge2

cartridge1

Application

Client
Database

Monitoring
Daemon

Configuration
Provider Logger

Cart. ServerVirtual
Path Mgr

Auth Server

 ORB

DynamoNaming Svc
1-12 Oracle Application Server Performance and Tuning Guide

Architecture
HTTP Listener Layer
The HTTP listener layer is made up of listeners, the adapter interface, and dispatch-
ers.

Listeners
Listeners are HTTP servers; they handle incoming requests and route them to the
dispatcher.

For a list of supported versions, refer to the product release notes.

Note that the documentation refers to the Oracle Application Server listener as the
Web Listener and to all other supported listeners as third-party listeners. All of the
above listeners are HTTP listeners.

For more information about listeners, see the Oracle Application Server Administra-
tion Guide.

Adapter
Oracle Application Server provides adapters to tightly integrate listeners with dis-
patchers. The adapter interface is a common API that both Oracle and third-party
listeners use to connect to the dispatcher.

Dispatchers
When a listener receives an HTTP request that does not identify a static HTML
page or CGI program, it passes the request to its dispatcher, which assigns the
request to a cartridge instance of the appropriate type. This process is described in
more detail in “Tracing Requests for Applications” on page 3-8. There is one dis-
patcher associated with each listener on each node of a Web site.

Virtual Path Manager
The dispatcher forwards requests to the virtual path manager. The virtual path
manager maps a request to a cartridge type and passes this information back to the
dispatcher. The virtual path manager also passes back authentication requirements
to the dispatcher. The dispatcher can then contact the authentication server for
authorization and forward the request on to the correct cartridge type.
 Performance Overview 1-13

Architecture
Oracle Application Server Layer
The Oracle Application Server layer provides resource management in handling
requests for applications deployed as cartridges on the server. It provides a com-
mon set of components for managing these applications. These components
include load balancing, logging, automatic failure recovery, security, directory, and
transaction components.

Applications Layer
The Applications layer is made up of applications, cartridges, and cartridge serv-
ers. For additional information, see "Introduction to Applications" in the Oracle
Application Server Administration Guide.

Applications and Cartridges
Oracle Application Server applications consist of cartridges. Applications and car-
tridges are the two main objects that you use when building applications for the
application server environment.

A cartridge consists of code that executes application logic and configuration data
that enable it to locate the application logic. For example, the PL/SQL cartridge
contains code that enables it to connect to Oracle databases and execute PL/SQL
stored procedures in the database. The configuration data in the cartridge contains
information such as which Oracle database to connect to and what username/pass-
word to use in order to run that stored procedure. Cartridges also enable your
application to communicate with other components of the application server.

Cartridges can provide runtime environments for specific programming languages.
For example, the JServlet cartridge contains a Java Virtual Machine for running
Java class files, and the Perl cartridge contains a Perl interpreter for running Perl
scripts. See “Creating Applications” on page 3-1 for a list of cartridges.

Cartridges are contained within applications. An application contains one or more
cartridges, and within an application, all the cartridges must be derived from the
same cartridge type. You cannot have, for example, an application that contains
both PL/SQL and JServlet cartridges.
1-14 Oracle Application Server Performance and Tuning Guide

Architecture
Multi-node Architecture
Multi-node ArchitectureFigure 1–7 illustrates the architecture of a multi-node Oracle Application Server
site. A multi-node site is a collection of Oracle Application Server machines that
together form a distributed platform for server-side applications. For each site, a
single machine, referred to as the “primary node”, hosts the Resource Manager
(RM) proxy, which stores configuration data for the entire site. The other machines
that comprise the site are called “remote nodes”.

Figure 1–7 Oracle Application Server multi-node site

Depending on the hardware configuration of each node, and the workload your
site supports, you can configure different nodes to run different Oracle Application
Server components.

Remote Node

Primary Node

Listener Dispatcher
RM

Listener Dispatcher

Listener Dispatcher

Listener Dispatcher

Cartridge
Server

Cartridge
Server

Cartridge
Server

Cartridge
Server

Network

Remote Node

Remote Node
 Performance Overview 1-15

Distributing Load Among Multiple Nodes
Distributing Load Among Multiple Nodes
For large workloads, you can improve performance by setting up your site with
multiple nodes, running listeners and dispatchers on the primary node, and run-
ning cartridge servers on remote nodes. You can optimize performance by dividing
responsibilities among nodes according to the workloads you anticipate.

For example, if your site offers a large volume of data for File Transfer Protocol
(FTP) download, you will get better performance for these downloads, and other
server accesses, by hosting the downloadable data on a separate Oracle Application
Server machine. This frees resources on other machines for handling HTTP and
application requests.

Distributed versus Single-Node Configurations
Oracle Application Server provides support for load balancing requests across mul-
tiple nodes in a site. However, if you are not sufficiently using the hardware
resources on one node, it is unlikely that you will see an increase in performance
from adding a second node. You may still wish to deploy a distributed configura-
tion for reasons other than performance, such as failure recovery or security. For
performance, add an additional node to an existing site only when you have satu-
rated your existing hardware resources.
1-16 Oracle Application Server Performance and Tuning Guide

New Performance Features in Oracle Application Server 4.0.8
New Performance Features in Oracle Application Server 4.0.8
Oracle Application Server 4.0.8 contains several new features that improve perfor-
mance and scalability.

Policy Management: In earlier versions of Oracle Application Server, configurable
parameters controlled the number of minimum and maximum server processes,
cartridge instances and execution threads. In 4.0.8., Oracle Application Server also
includes a priority mode for load balancing. In priority mode (the default), the
application server will manage creating new processes, threads and instances. Tun-
ing minimums and maximums can be a complicated activity, and many perfor-
mance problems in earlier versions of Oracle Application Server were caused by
incorrect use of these parameters. Priority mode simplifies administration and pro-
vides more dynamic load balancing. It is the recommended setting.

Dynamic Monitoring: Oracle Application Server 4.0.8 includes a new component,
the Dynamic Monitoring Service, DMS, which extends the capabilities of the admin-
istrative monitoring page in previous releases. DMS provides a wider range of per-
formance metrics and a richer user interface. The administrative monitoring page is
still supported in addition to DMS.

Session Management for Java Servlets: User session management for Java Servlet
(also new in Oracle Application Server 4.0.8) applications has improved perfor-
mance based on a new session cache facility. The Java Servlet Developer’s Guide
provides details on this new feature.
 Performance Overview 1-17

New Performance Features in Oracle Application Server 4.0.8
1-18 Oracle Application Server Performance and Tuning Guide

 Designing Performant Applica
2

Designing Performant Applications

In designing applications, performance is only one consideration. There are often
trade-offs made to maintainability, security, and ease of programming when maxi-
mizing performance. This chapter provides guidelines for writing applications that
balance performance with these other considerations.

Contents
■ Java-Based Applications

■ PL/SQL Applications

Java-Based Applications
Oracle Application Server offers a variety of Java programming models. These are
described in Oracle Application Server: Overview and Glossary. This section will focus
on database connectivity and the two most commonly used models.

■ Database Connectivity

■ JServlet Applications

■ Enterprise Java Beans invoked by JServlet Applications

Database Connectivity
With Oracle Application Server there are two JDBC drivers for database access, the
OCI and the JTS driver. For better performance, use the OCI driver when your
application:

■ uses programmatic instead of declarative transactions. Programmatic transac-
tions require that you include COMMIT statements explicitly in your code
tions 2-1

Java-Based Applications
instead of specifying transaction properties on the Node Manager configura-
tion forms.

■ does not require transactions that span multiple method invocations

■ does not require distributed transactions that access multiple databases within
one transaction.

There is a substantial performance gain in using the OCI driver in these situations.

Using programmatic transactions instead of declarative transactions often results in
better performance because declarative transactions are slower and require the JTS
driver. See “Enabling Transactions” in the Administration Guide for further details
about using transactions with Oracle Application Server.

JServlet Applications
JServlets are the simplest Java programming model offered with Oracle Applica-
tion Server.

Threading Models
Developer’s Guide: JServlet Applications provides information on threading models
supported by the JServlet cartridge. The following threading issues should be
noted.

■ Implementing the SingleThreadModel interface does not imply that only
one thread will be used per process. It only determines whether concurrent
users share access to servlet instances or whether each executing thread has its
own instance.

■ Implementing the SingleThreadModel interface creates servlets that are seri-
ally reusable. Although an individual servlet instance can only execute one
request at a time, when the request completes the servlet will be available to
handle another request.

■ Declaring objects as static will cause the objects to be shared by all threads in
the process regardless of threading model.

■ Spawning sub-threads is not recommended because it limits Oracle Applica-
tion Server’s load balancing and management capabilities.
2-2 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
For most applications, servlets that implement the SingleThreadModel interface are
recommended, particularly for applications that access an Oracle database. These
applications are easier to develop and can achieve the same level of performance as
a multi-threaded servlet.

Example 2–1 shows a servlet that implements the SingleThreadModel interface
and connects to a database. It demonstrates the following performance concepts:

1. Implementing the SingleThreadModel allows each thread to have its own
servlet instance during execution. Since each instance will connect to a data-
base in the init() method and closes the connection in the destroy()
method, the database connection is kept for the life cycle of the servlet instance.
The cost of opening and closing the database connection is only incurred once
per process. Each instance within a process will get its own database connec-
tion and all instances within a process can simultaneously communicate with
the database.

If the SingleThreadModel is implemented, access to database connections
would need to be synchronized because the connections are shared by all
instances in the process. You can create multiple connections yourself, but your
application needs to keep track of and synchronize access to the connections.

2. If the database connection is lost while a servlet instance is still alive, attempt-
ing to use the connection will raise the SQLException exception. If the connec-
tion is not re-established, all subsequent requests sent to this servlet instance
will fail. Additional error checking could be added to check for connection fail-
ures and call getDBConnection() to establish a new connection. This will
make the application more robust.

3. The prepare statement used to access the database is created in the init()
method through the getDBConnection() method. The constant portion of
the prepare statement is set up once, only the setString and execute state-
ments are in the doGet() method because they must be declared and called
once for each request.

Similar to the database connection, the prepare statement is not closed after
each request and thus, can be reused. It is closed in the destroy() method.
 Designing Performant Applications 2-3

Java-Based Applications
Example 2–1 Implementing the SingleThreadModel interface

import java.io.*;
import java.lang.*;
import java.sql.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class JSampleSingleThread extends HttpServlet
 implements SingleThreadModel { // NOTE 1 - implement the SingleThreadModel
 private final static String COMPONENT_NAME = "JSampleSingleThread";
 private final static String DBSERVER_PARAM = "DBServer";
 private final static String USERID = "userid";

 // Instance variables
 private String dbServer = null;
 private Connection dbConn = null;
 private CallableStatement dbStmt = null;

 //--
 // Servlet life cycle methods

 // The init() method is called every time when an instance of this
 // servlet is created.
 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get configuration information
 dbServer = config.getInitParameter(DBSERVER_PARAM);
 if (dbServer == null) {
 throw new ServletException("getInitParameter Exception: " +
 DBSERVER_PARAM + " " + dbServer);
 }

 // get the database connection
 try {
 getDBConnection();
 } catch (Throwable e) {
 throw new ServletException(e.toString());
 }
 } // init
2-4 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 // The destroy() method is called every time when an instance of this
 // servlet is destroyed.
 public void destroy()
 {
 // Close the database statement and connection used by this instance.
 try {
 if (dbStmt != null)
 dbStmt.close();

 if (dbConn != null)
 dbConn.close();
 } catch (SQLException e) {
 getServletContext().log(e.toString());
 }
 } // destroy

 //--
 // doGet() is the servlet's main entry for every request.
 public void doGet (HttpServletRequest httpRequest,
 HttpServletResponse httpResponse)
 throws ServletException, IOException {
 String userName = null;
 String employer = null;
 String allowances = null;
 String addWithholding = null;
 PrintWriter httpOut;

 // Initialize HTTP response header
 httpResponse.setContentType("text/html");
 httpOut = httpResponse.getWriter();
 httpOut.println("<html>");
 httpOut.println("<head><title>" + COMPONENT_NAME + "</title></head>");

 // Get user id parameter
 String userid = httpRequest.getParameter(USERID);
 if (userid == null) {
 pgError(httpOut, "Unable to retrieve user information, " +
 USERID + " is null");
 return;
 }
 Designing Performant Applications 2-5

Java-Based Applications
 // Get data from database, most of dbStmt is defined in getDBConnection()
 try {
 dbStmt.setString (1, userid);
 dbStmt.execute();
 String retCode = dbStmt.getString(8).trim();

 if (retCode.equals("0")) {
 String lastName = (dbStmt.getString(2)).trim();
 String firstName = (dbStmt.getString(3)).trim();
 String middleName = (dbStmt.getString(4)).trim();
 employer = (dbStmt.getString(5)).trim();
 allowances = (dbStmt.getString(6)).trim();
 addWithholding = (dbStmt.getString(7)).trim();
 userName = firstName + " " + middleName + " " + lastName;
 pgOut(httpOut, userid, userName, employer, allowances, addWithholding);
 } else if (retCode.equals("100")) {
 pgError(httpOut, "Record not found for " + userid);
 } else {
 pgError(httpOut, "Unable to retrieve record for " + userid +
 " (SQLERROR " + retCode);
 }
 } catch (SQLException se) {
 // NOTE 2 - catch the SQLException exception
 throw new ServletException(se.toString());
 } catch (Throwable e) {
 throw new ServletException(e.toString());
 } // try
 } // doGet

 //--
 // Servlet private methods

 // Get database connection and prepare the database statement
 // This method is called from the init() method.
 private void getDBConnection()
 throws Throwable {
 try { // open the database connection
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 dbConn = DriverManager.getConnection(
 "jdbc:oracle:oci8:@" + dbServer, "scott", "tiger");
 } catch (Throwable e) {
 throw e;
 }
2-6 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 try { // NOTE 3 - set up prepare statement
 dbStmt =
 dbConn.prepareCall("begin GET_PERFSAMPLE_DATA(?,?,?,?,?,?,?,?); end;");
 dbStmt.registerOutParameter (2, Types.VARCHAR);
 dbStmt.registerOutParameter (3, Types.VARCHAR);
 dbStmt.registerOutParameter (4, Types.VARCHAR);
 dbStmt.registerOutParameter (5, Types.VARCHAR);
 dbStmt.registerOutParameter (6, Types.VARCHAR);
 dbStmt.registerOutParameter (7, Types.VARCHAR);
 dbStmt.registerOutParameter (8, Types.VARCHAR);
 } catch (Throwable e) {
 throw e;
 }
 } //getDBConnection

 // Return the HTML page
 private void pgOut (PrintWriter httpOut, String userid,
 String userName, String employer, String allowances,
 String addWithholding) {
 httpOut.println("<body>");
 httpOut.println("<h1>User: " +
 userid + " </h1>");
 httpOut.println("<h1>Name: " +
 userName + " </h1>");
 httpOut.println("<h1>Employer: " +
 employer + " </h1>");
 httpOut.println("<h1>Number of Allowances: " +
 allowances + " </h1>");
 httpOut.println("<h1>Additional Amount of Withholding: " +
 addWithholding + " </h1>");
 httpOut.println("</body>");
 } // pgOut

 // Print HTML error page
 private void pgError (PrintWriter httpOut, String errmsg) {
 httpOut.println("<body>");
 httpOut.println("<h1> ERROR: " + errmsg +
 " </h1>");
 httpOut.println("<hr>");
 httpOut.println("</body>");
 } // pgError
} // JSampleSingleThread
 Designing Performant Applications 2-7

Java-Based Applications
Example Notes
This example reads a user id from the invoking URL and retrieves information asso-
ciated with that id from a database. The application is invoked with the URL:

http://<machine>:<port>/<virtual_path>/JSampleSingleThread?userid=<id>

The following values in the code will need to be modified to match your system’s
configuration.

■ DBServer (used in the static declarations) is a value specified in the Java Envi-
ronment form for the application. It should be defined as the following name-
value pair:

name — Servlet.JSampleSingleThread.initArgs

value — DBServer=<tnsnames.ora service name>

■ scott and tiger are used in the getDBConnection() method. These are param-
eters passed in the connect string that represent the user id and password for
accessing the database. Change these to values appropriate for your system.

The information in the database is stored according to the schema shown in
Example 2–2.

Example 2–2 Schema for perfSample

create table perfSample
(user_id varchar2(30),
 last_name varchar2(30),
 first_name varchar2(30),
 middle_name varchar2(30),
 employer varchar2(30) not null,
 allowances number(2) not null,
 addWithholding number(10,2) not null,
 constraint userid_pkey primary key(user_id)
);

Sessions
When an incoming request is received for a user with an open session, Oracle
Application Server will select an instance to handle the request and then load the
necessary session data into that instance. If the session is initialized as a local ses-
sion, each session is restricted to a single servlet process. However, any instance
within that process can execute requests for that session. For better performance,
use local sessions.
2-8 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
Example 2–3 shows a simple JServlet application which implements the SingleTh-
readModel and uses the session manager to store intermediate session data before
updating them to the database.

The example uses the following model:

1. Get a user id from a client. Retrieve the appropriate data from the database
and save it in the session manager.

2. Let the client change the data and request that the change be updated in the
database. Save the changed data in the session manager.

3. Ask the client to confirm the changes.

4. When the client requests that the changed data be committed to the database,
retrieve the data from the session manager and commit it to the database.

5. Invalidate the session.

The following items are configurable items that can have an effect on the perfor-
mance of your session based application.

■ Memory usage — Using sessions consumes memory. The amount of memory
per process will depend on the session timeout value, the size and number of
objects that can be stored in the session manager, and the maximum number of
clients per servlet. Applications that use sessions should be configured with suf-
ficient memory. To increase the heap size in the servlet process, set the
INITIAL_HEAP and MAX_HEAP variables to appropriate values when configur-
ing the servlet. These variables can be set in the JServlet application’s Java Envi-
ronment form. See the Administration Guide for more information.

■ Session invalidation — A session can only be invalidated by calling the
session.invalidate() or if it times out. If the number of available sessions
runs out and new servers cannot be started (the maximum number of servers is
reached), new clients would have to wait until sessions have been released or
invalidated. Be sure to allow for a sufficient number of concurrent sessions in the
JServlet cartridge’s Tuning form. See the Administration Guide for more informa-
tion.

Concurrent sessions are defined by the maximum number of clients per server
times the maximum number of servers for the servlet.
 Designing Performant Applications 2-9

Java-Based Applications
Example 2–3 Using sessions

import java.io.*;
import java.lang.*;
import java.sql.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class JSampleSession extends HttpServlet implements SingleThreadModel {
 // String constants
 private final static String COMPONENT_NAME = "JSampleSession";
 private final static String DBSERVER_PARAM = "DBServer";
 private final static String USERID = "userid";
 private final static String REQID = "reqid";
 private final static String EMPLOYER = "employer";
 private final static String ALLOWANCES = "allowances";
 private final static String AMOUNT = "amount";
 private final static String REQID_GET = "Get DB Data";
 private final static String REQID_UPDATE = "Submit Changes";
 private final static String REQID_COMMIT = "Commit Changes";
 private final static String REQID_RESET = "Reset to DB values";

 // Instance variables
 private String dbServer = null;
 private Connection dbConn = null;
 private CallableStatement dbGetStmt = null;
 private CallableStatement dbPutStmt = null;

 // The init() function is called every time when an instance of this servlet
 // is created.
 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get configuration information
 dbServer = config.getInitParameter(DBSERVER_PARAM);
 if (dbServer == null) {
 throw new ServletException("getInitParameter Exception: " +
 DBSERVER_PARAM + "=" + dbServer);
 }
2-10 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 // Get database connection
 try {
 getDBConnection();
 } catch (Throwable e) {
 throw new ServletException(e.toString());
 }
 } // init()

 // The destroy() method is called every time when an instance of this
 // servlet is destroyed.
 public void destroy() {
 // Close the database connection used by this instance.
 try {
 if (dbGetStmt != null) dbGetStmt.close();
 if (dbPutStmt != null) dbPutStmt.close();
 if (dbConn != null) dbConn.close();
 } catch (SQLException e) {
 getServletContext().log(e.toString());
 } // try
 } // destroy()

 // The doGet() method is this servlet’s main entry point for every request
 public void doGet (HttpServletRequest httpRequest,
 HttpServletResponse httpResponse)
 throws ServletException, IOException {
 PerfSampleData dbData = null;
 PerfSampleData newData = null;
 boolean getDBData = false;
 HttpSession session;
 PrintWriter httpOut;

 // Initialize HTTP response header
 httpResponse.setContentType("text/html");
 httpOut = httpResponse.getWriter();
 httpOut.println("<html>");
 httpOut.println("<head><title>" + COMPONENT_NAME + "</title></head>");

 // Get input parameters
 String userid = httpRequest.getParameter(USERID);
 if (userid == null) {
 pgError(httpOut, USERID + " is null");
 return;
 }
 Designing Performant Applications 2-11

Java-Based Applications
 String reqid = httpRequest.getParameter(REQID);
 if (reqid == null) {
 reqid = REQID_GET;
 }

 // Get the servlet session.
 // This function returns a new session or an existing session
 // established by the client in previous requests.
 try {
 session = httpRequest.getSession();
 } catch (Exception e) {
 throw new ServletException(e.toString());
 }

 // Create session keys
 String useridKey = "USERID";
 String dbDataKey = userid + "DBDATA";
 String newDataKey = userid + "NEWDATA";

 // If this is not a new session, check if the userid is the
 // same as last userid. If not, invalidate the old session
 // and set up a new one for the new user.
 if (!session.isNew() &&
 !userid.equals((String)session.getValue(useridKey))) {
 try {
 session.invalidate();
 session = httpRequest.getSession();
 } catch (Exception e) {
 throw new ServletException(e.toString());
 } // try
 getDBData = true;
 } // if

 // If this is a new session, retrieve the data from the
 // database and save it in the session manager.
 // Otherwise, retrieve the data from session manager.
 if (session.isNew() || getDBData) {
 try {
 dbData = getPerfSampleData(userid, httpOut);
 session.putValue(dbDataKey, (Object)dbData);
 session.putValue(useridKey, (Object)userid);
2-12 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 } catch (Throwable e) {
 session.invalidate();
 throw new ServletException(e.toString());
 } // try
 } else { // the session is not new
 try {
 dbData = (PerfSampleData) session.getValue(dbDataKey);
 } catch (Exception e) {
 throw new ServletException(e.toString());
 } // try
 } // if-else

 // The following if block looks at the requested functions and
 // follows the appropriate branch based on the value of reqid.

 // Get data from database
 if (reqid.equals(REQID_GET)) {
 returnPage(httpOut, httpRequest, dbData, REQID_GET);
 }

 // Save data to session manager and ask user to confirm
 else if (reqid.equals(REQID_UPDATE)) {
 newData = new PerfSampleData();
 newData.userid = dbData.userid;
 newData.lastName = dbData.lastName;
 newData.firstName = dbData.firstName;
 newData.middleName = dbData.middleName;
 newData.employer = httpRequest.getParameter(EMPLOYER);
 newData.allowances = httpRequest.getParameter(ALLOWANCES);
 newData.withholding = httpRequest.getParameter(AMOUNT);

 if (newData.employer.length() == 0 ||
 newData.allowances.length() == 0 ||
 newData.withholding.length() == 0) {
 pgError(httpOut, "One or more data fields are null");
 returnPage(httpOut, httpRequest, newData, REQID_GET);
 return;
 } // if
 Designing Performant Applications 2-13

Java-Based Applications
 try {
 Integer.parseInt(newData.allowances);
 } catch (NumberFormatException e) {
 pgError(httpOut, "Number of nxemptions value is invalid");
 returnPage(httpOut, httpRequest, newData, REQID_GET);
 return;
 } // try

 try {
 Float.valueOf(newData.withholding);
 } catch (NumberFormatException e) {
 pgError(httpOut, "Additional withholding amount is invalid");
 returnPage(httpOut, httpRequest, newData, REQID_GET);
 return;
 } // try

 try {
 session.putValue(newDataKey, (Object)newData);
 } catch (Exception e) {
 throw new ServletException(e.toString());
 } // try
 returnPage(httpOut, httpRequest, newData, REQID_UPDATE);
 } // else if reqid.equals(REQID_UPDATE)

 // Commit the changes to the database and invalidate the session.
 else if (reqid.equals(REQID_COMMIT)) {
 try {
 newData = (PerfSampleData) session.getValue(newDataKey);
 if (newData == null) {
 throw new ServletException(
 "getValue Exception: " + newDataKey + " not found in session");
 }

 String retCode = updatePerfSampleData(newData, httpOut);
 if (retCode.equals("0")) {
 returnPage(httpOut, httpRequest, newData, REQID_COMMIT);
 session.invalidate();
 } else {
 returnPage(httpOut, httpRequest, newData, REQID_GET);
 } // if-else
 } catch (Throwable e) {
 throw new ServletException(e.toString());
 } // try
 } // else if reqid.equals(REQID_COMMIT)
2-14 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 // Reset to database value
 else if (reqid.equals(REQID_RESET)) {
 returnPage(httpOut, httpRequest, dbData, REQID_RESET);
 } // else if reqid.equals(REQID_RESET)

 // Unknown request
 else {
 pgError(httpOut, "Invalid request");
 } // if reqid.equals() block
 } // doGet()

 // Get data from database
 private PerfSampleData getPerfSampleData(String userid, PrintWriter httpOut)
 throws Throwable {
 PerfSampleData dbData = new PerfSampleData();

 try {
 dbGetStmt.setString (1, userid);
 dbGetStmt.execute();

 String retCode = dbGetStmt.getString(8).trim();

 if (retCode.equals("0")) {
 dbData.userid = userid;
 dbData.lastName = (dbGetStmt.getString(2)).trim();
 dbData.firstName = (dbGetStmt.getString(3)).trim();
 dbData.middleName = (dbGetStmt.getString(4)).trim();
 dbData.employer = (dbGetStmt.getString(5)).trim();
 dbData.allowances = (dbGetStmt.getString(6)).trim();
 dbData.withholding = (dbGetStmt.getString(7)).trim();
 } else {
 if (retCode.equals("100")) {
 pgError(httpOut, "Record not found for " + userid);
 } else {
 pgError(httpOut, "Unable to retrieve record for " + userid +
 " (SQLERROR " + retCode + ")");
 } // inner if-else
 } // outer if-else
 } catch (SQLException e) {
 throw e;
 } // try

 return dbData;
 } // getPerfSampleData()
 Designing Performant Applications 2-15

Java-Based Applications
 // Update data to database
 private String updatePerfSampleData(PerfSampleData dbData,
 PrintWriter httpOut) throws Throwable {
 String retCode = null;

 try {
 dbPutStmt.setString (1, dbData.userid);
 dbPutStmt.setString (2, dbData.employer);
 dbPutStmt.setString (3, dbData.allowances);
 dbPutStmt.setString (4, dbData.withholding);
 dbPutStmt.execute();

 retCode = dbPutStmt.getString(5).trim();
 if (!retCode.equals("0")) {
 pgError(httpOut, "Unable to update to database, SQL returns error " +
 retCode);
 } // if
 } catch (SQLException e) {
 throw e;
 } // try
 return retCode;
 } // updatePerfSampleData()

 // Get database connection
 private void getDBConnection() throws Throwable {
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 dbConn = DriverManager.getConnection(
 "jdbc:oracle:oci8:@" + dbServer, "scott", "tiger");

 dbGetStmt =
 dbConn.prepareCall("begin GET_PERFSAMPLE_DATA(?,?,?,?,?,?,?,?); end;");
 dbGetStmt.registerOutParameter (2, Types.VARCHAR);
 dbGetStmt.registerOutParameter (3, Types.VARCHAR);
 dbGetStmt.registerOutParameter (4, Types.VARCHAR);
 dbGetStmt.registerOutParameter (5, Types.VARCHAR);
 dbGetStmt.registerOutParameter (6, Types.VARCHAR);
 dbGetStmt.registerOutParameter (7, Types.VARCHAR);
 dbGetStmt.registerOutParameter (8, Types.VARCHAR);
2-16 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 dbPutStmt =
 dbConn.prepareCall("begin UPDATE_PERFSAMPLE_DATA (?,?,?,?,?); end;");
 dbPutStmt.registerOutParameter (5, Types.VARCHAR);
 } catch (Throwable e) {
 throw e;
 } // try
 } // getDBConnection()

 // Return the HTML page.
 public void returnPage(PrintWriter httpOut, HttpServletRequest httpRequest,
 PerfSampleData dbData, String reqid) {
 httpOut.println("<body>");

 String userName = dbData.firstName + " " + dbData.middleName + " " +
 dbData.lastName;

 httpOut.println("<h1>User: " + dbData.userid + "</h1>");
 httpOut.println("<h1>Name: " + userName + "</h1>");

 httpOut.println("<form method=get action=" +
 HttpUtils.getRequestURL(httpRequest).toString() + ">");

 // show this if you want to confirm
 if (reqid.equals(REQID_UPDATE)) {
 httpOut.println("<h1> " +
 "Please confirm your changes: " +
 " </h1>");
 httpOut.println("<h1>Employer: " +
 dbData.employer + " </h1>");
 httpOut.println("<h1>Number of Allowances: " +
 dbData.allowances +
 " </h1>");
 httpOut.println("<h1>Additional Amount of Withholding: $"
 + dbData.withholding +
 " </h1>");
 httpOut.println("<hr>");
 httpOut.println("<input type=submit name=" + REQID +
 " value='" + REQID_COMMIT + "'>");
 httpOut.println("<input type=submit name=" + REQID +
 " value='" + REQID_RESET + "'>");

 // show this after submitting changes
 } else if (reqid.equals(REQID_COMMIT)) {
 httpOut.println("<h1> " +
 Designing Performant Applications 2-17

Java-Based Applications
 "Changes updated to database." +
 " </h1>");
 httpOut.println("<input type=submit name=" + REQID +
 " value='" + REQID_GET + "'>");

 // show this to ask for changes
 } else {
 httpOut.println("<h1>Employer <input type=text size=30 name=" +
 EMPLOYER + " value=" + dbData.employer + "> </h1>");
 httpOut.println("<h1>Number of Allowances <input type=text size=2 name="
 + ALLOWANCES + " value=" + dbData.allowances + "> </h1>");
 httpOut.println("<h1>Additional Amount of Withholding" +
 "<input type=text size=15 name=" + AMOUNT +
 " value=" + dbData.withholding + "> </h1>");
 httpOut.println("<hr>");

 httpOut.println("<input type=submit name=" + REQID +
 " value='" + REQID_UPDATE + "'>");
 httpOut.println("<input type=submit name=" + REQID +
 " value='" + REQID_RESET + "'>");
 } // if-else if-else

 httpOut.println("<input type=hidden name=" + USERID +
 " value=" + dbData.userid +">");
 httpOut.println("</form>");
 httpOut.println("</body>");
 } // returnPage()

 // Print HTML error page
 private void pgError (PrintWriter httpOut, String errmsg) {
 httpOut.println("<body>");
 httpOut.println("<h1> ERROR: " + errmsg +
 " </h1>");
 httpOut.println("<hr>");
 httpOut.println("</body>");
 } // pgError()
} JSampleSession class
2-18 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
// Data object to be stored in session manager
class PerfSampleData {
 public String userid;
 public String firstName;
 public String middleName;
 public String lastName;
 public String employer;
 public String allowances;
 public String withholding;
} // PerfSampleData class

See “Example Notes” on page 2-8 for information about invoking and configuring
this example.

Enterprise Java Beans invoked by JServlet Applications
For most HTTP clients, implementing applications completely in JServlets instead
of invoking Enterprise Java Beans (EJBs) from JServlet applications will improve
performance. However, there are scenarios where it is appropriate or necessary to
invoke EJBs directly.

Stateless vs. Stateful Beans
A stateful bean exists for a single client. It carries a “state” that is relevant only for
the particular client. A bean is instantiated for every remote interface instance held
by the client. Only one thread will execute at a time for each session bean, but mul-
tiple beans can execute concurrently in the same server process.

A stateless bean does not carry any state and thus, can service multiple clients —
one at a time per bean. The number of beans instantiated depends on the number
of concurrent method invocations.

Oracle recommends the use of stateless beans wherever possible. These beans are
pooled and after being used, beans are returned to the pool for reuse. This
improves performance because the number of beans that need to be maintained is
based on the request rate and not on the number of users in the system. By pooling
beans, the cost of creating and removing beans is incurred only once per bean.

Example 2–4 shows an EJB that can be invoked from a JServlet application (shown
in Example 2–6). In this example, accessing the database now occurs in the EJB
instead of the JServlet as opposed to Example 2–1. Each bean instance will open
one database connection in the ejbCreate() method and close it in the ejbRe-
move() method when the bean instance is destroyed.
 Designing Performant Applications 2-19

Java-Based Applications
For optimal performance, this bean should be declared as stateless in the deploy-
ment descriptor file. This gives each bean instance its own database connection and
allows it to service multiple client requests. Although each bean must open its own
database connection, the beans will be pooled after servicing their requests and will
not need to reopen the database connection for future requests.

The information in the database is stored according to the schema shown in
Example 2–2.

Example 2–4 Stateless EJB application

package ejbSample;

import oracle.oas.ejb.*;
import java.util.*;
import java.io.*;
import java.sql.*;
import javax.ejb.*;
import javax.naming.*;

public class ejbSampleDB implements javax.ejb.SessionBean {
 // Constants
 private static final String DBSERVER = "DBServer";
 private static final String OAS_LOGGER = "oas_service:logger";

 // Instance variables
 Logger logger = null;
 SessionContext sessctx = null;
 String dbServer = null;
 Connection dbConn = null;
 CallableStatement dbStmt = null;

 // EJB constructor and life cycle methods
 public void setSessionContext(SessionContext sc) {
 this.sessctx = sc;
 }

Note: Only the main EJB application is shown here. The other
supporting files (home, remote, exception) are in the samples
directory on the Oracle Application Server CD. The samples path
can be found in the Release Notes.
2-20 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 public void ejbCreate() throws CreateException {

 try {
 logger = (Logger) (new InitialContext()).lookup(OAS_LOGGER);
 logger.setSeverity(Logger.LOG_SEVERITY_ERROR);
 } catch(javax.naming.NamingException e) {
 e.printStackTrace (System.out);
 throw new CreateException (e.getMessage());
 }

 Properties env = sessctx.getEnvironment();
 dbServer = env.getProperty(DBSERVER);

 if (dbServer == null) {
 logger.println(DBSERVER + " is null");
 throw new CreateException();
 }

 try {
 getDBConnection(); // Get db connection and set up the prepare statement
 } catch (Throwable e) {
 throw new CreateException();
 } // try
 } // ejbCreate

 public void ejbRemove() {
 // Close the DB connection before exit
 try {
 if (dbStmt != null) { dbStmt.close(); }
 if (dbConn != null) { dbConn.close(); }
 } catch (Throwable e) {
 logger.println(e.toString());
 } // try
 } // ejbRemove
 Designing Performant Applications 2-21

Java-Based Applications
 public void ejbActivate() { }
 public void ejbPassivate() { }

 //--
 // get data from database
 public ejbSampleDBObj getSampleData(String userid)
 throws ejbSampleDBException {

 ejbSampleDBObj dbObj = new ejbSampleDBObj();
 dbObj.userid = userid;

 try {
 dbStmt.setString (1, dbObj.userid);
 dbStmt.execute();

 dbObj.retCode = dbStmt.getString(8).trim();

 if (dbObj.retCode.equals("0")) {
 dbObj.lastName = (dbStmt.getString(2)).trim();

 dbObj.firstName = (dbStmt.getString(3)).trim();
 dbObj.middleName = (dbStmt.getString(4)).trim();
 dbObj.employer = (dbStmt.getString(5)).trim();
 dbObj.allowances = (dbStmt.getString(6)).trim();
 dbObj.addWithholding = (dbStmt.getString(7)).trim();
 }

Note: The ejbActivate() and ejbPassivate() methods are
not called in this release. In future releases when these methods are
called, the database connection must be closed in the
ejbPassivate() method and reopened in the ejbActivate()
method because database connections are not serializable with
stateless beans.
2-22 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 } catch (SQLException se) {

 throw new ejbSampleDBException(se.toString());
 } catch (Throwable e) {
 throw new ejbSampleDBException(e.toString());
 }
 return dbObj;
 } // getSampleData

 // Get database connection
 private void getDBConnection () throws Throwable {
 try { // open the database connection
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 dbConn = DriverManager.getConnection(
 "jdbc:oracle:oci8:@" + dbServer, "scott", "tiger");
 } catch (Throwable e) {
 logger.println("Exception in getDBConnection: " + e.toString());
 throw e;
 }

 try { // set up prepare statement
 dbStmt =
 dbConn.prepareCall("begin GET_PERFSAMPLE_DATA(?,?,?,?,?,?,?,?); end;");
 dbStmt.registerOutParameter (2, Types.VARCHAR);
 dbStmt.registerOutParameter (3, Types.VARCHAR);
 dbStmt.registerOutParameter (4, Types.VARCHAR);
 dbStmt.registerOutParameter (5, Types.VARCHAR);
 dbStmt.registerOutParameter (6, Types.VARCHAR);
 dbStmt.registerOutParameter (7, Types.VARCHAR);
 dbStmt.registerOutParameter (8, Types.VARCHAR);

Note: If the database connection is lost while a servlet instance is
still alive, attempting to use the connection will raise the
SQLException exception. If the connection is not re-established,
all requests sent to this servlet instance will fail. Additional error
checking should be added to check for connection failure and
perform appropriate exception handling. This will make your
application more robust.
 Designing Performant Applications 2-23

Java-Based Applications
 } catch (Throwable e) {
 logger.println("Exception in prepareCall: " + e.toString());
 throw e;
 }
 } // getDBConnection
} // class

This example uses the database object defined Example 2–5.

Example 2–5 The EJB sample database object

package ejbSample;

public final class ejbSampleDBObj implements java.io.Serializable {
 public String userid;
 public String lastName;
 public String firstName;
 public String middleName;
 public String employer;
 public String allowances;
 public String addWithholding;
 public String retCode;
}

In Example 2–6 we see the JServlet code that invokes this EJB. The servlet code
does not implement the SingleThreadModel interface, so there will only be one
instance per process. We use JNDI’s synchronization ability to guarantee thread
safety. This allows us to get the JNDI home only once. This results in a performance
increase because getting the JNDI home is an expensive operation.

The init() and destroy() methods are only called once. Since this servlet does
not implement the SingleThreadModel, these methods will be called only once per
process no matter how many instances are created for this servlet. The init()
method acquires the EJB application context and the context is closed in the
destroy() method. All threads invoking the servlet will share this context when
getting an EJB from the EJB server.

To invoke the EJB with the servlet, the servlet must include the following JAR files
in its CLASSPATH:

■ $ORACLE_HOME/ows/apps/ejb/<ejbSample>/_client.jar

■ $ORACLE_HOME/ows/apps/ejb/<ejbSample>/_application.jar

where <ejbSample> is the name of the EJB application.
2-24 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
Further information on invoking the JServlet application or changing the code so it
works on your system, see “Example Notes” on page 2-8.

Example 2–6 JServlet that invokes ejbSampleDB

import ejbSample.*;

import java.io.*;
import java.lang.*;
import java.sql.*;
import java.util.*;
import javax.ejb.CreateException;
import javax.ejb.RemoveException;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import javax.servlet.*;
import javax.servlet.http.*;

public class JSampleEJB extends HttpServlet {
 // String constants
 private final static String COMPONENT_NAME = "JSampleEJB";
 private final static String USERID = "userid";
 private final static String SAMPLE_EJB = "ejbSample/ejbSampleDB";

 // Instance variables
 private Context initialContext = null;
 private ejbSampleDBHome sampleHome = null;

 // The init() method is called when the servlet instance is first created.
 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get configuration information.
 String url = config.getInitParameter("RMProxyURL");
 if (url == null) { url = "oas:///"; }

 // Get initial naming context and the application context for
 // the ejbSample application. The context for this EJB will
 // be shared by all threads in this servlet.
 try {
 initialContext = (Context) (new InitialContext()).lookup(url);

 sampleHome = (ejbSampleDBHome)
 PortableRemoteObject.narrow(initialContext.lookup(SAMPLE_EJB),
 ejbSampleDBHome.class);
 Designing Performant Applications 2-25

Java-Based Applications
 } catch (Throwable e) {
 throw new ServletException(e.toString());
 } // try
 } // init

 // The destroy() method is called when the servlet instance is shutdown.
 public void destroy() {
 // Release the initial naming context and the ejbSample application
 // instance context. Closing the initial context will close all
 // contexts under the initial context.
 if (initialContext != null) {
 try {
 initialContext.close();
 } catch (Throwable e) {
 getServletContext().log("Exception in closing EJB context:" +
 e.toString());
 } // try
 } // if
 } // destroy

 // The doGet() method is the entry function for every request.
 public void doGet (HttpServletRequest httpRequest,
 HttpServletResponse httpResponse)
 throws ServletException, IOException {
 ejbSampleDBRemote sampleEJB = null;
 ejbSampleDBObj sampleObj = null;
 PrintWriter httpOut;

 // Initialize HTTP response header
 httpResponse.setContentType("text/html");
 httpOut = httpResponse.getWriter();
 httpOut.println("<html>");
 httpOut.println("<head><title>" + COMPONENT_NAME + "</title></head>");

 // Get user id parameter
 String userid = httpRequest.getParameter(USERID);
 if (userid == null) {
 pgError(httpOut, "Unable to retrieve user information, " +
 USERID + " is null");
 return;
 } // if
2-26 Oracle Application Server Performance and Tuning Guide

Java-Based Applications
 // Get an EJB instance
 try {
 sampleEJB = (ejbSampleDBRemote) sampleHome.create();
 } catch (java.rmi.RemoteException re) {

 throw new ServletException("EJB Create Exception: " + re.toString());
 } catch (Throwable ce) {
 throw new ServletException(ce.toString());
 } // try

 // Invoke the EJB method and release the EJB instance upon completion.
 try {
 sampleObj = sampleEJB.getSampleData(userid);
 if (sampleObj.retCode.equals("0")) {
 pgOut(httpOut, sampleObj);
 } else if (sampleObj.retCode.equals("100")) {
 pgError(httpOut, "Record not found for " + userid);
 } else {
 pgError(httpOut, "Unable to retrieve record for " + userid +
 " (SQLERROR " + sampleObj.retCode);
 }
 } catch (Throwable e) {
 throw new ServletException("EJB Invoke Exception: " + e.toString());
 } finally {
 try {
 if (sampleEJB != null) {
 sampleEJB.remove(); }
 } catch (Throwable e) {
 getServletContext().log("EJB Remove Exception: " + e.toString());
 } // inner try
 } // outer try

 } // doGet

Note: If the EJB server is down, the create() method will throw a
RemoteException exception. If the servlet does not acquire a
new EJB application context, all subsequent requests sent to this
servlet will fail with the same error.
 Designing Performant Applications 2-27

Java-Based Applications
 // Print HTML output page
 private void pgOut (PrintWriter httpOut, ejbSampleDBObj sampleObj) {
 String userName = sampleObj.firstName + " " + sampleObj.middleName + " " +
 sampleObj.lastName;
 httpOut.println("<body>");
 httpOut.println("<h1>User: " +
 sampleObj.userid + " </h1>");
 httpOut.println("<h1>Name: " +
 userName + " </h1>");
 httpOut.println("<h1>Employer: " +
 sampleObj.employer + " </h1>");
 httpOut.println("<h1>Number of Allowances: " +
 sampleObj.allowances + " </h1>");
 httpOut.println("<h1>Additional Amount of Withholding: " +
 sampleObj.addWithholding + " </h1>");
 httpOut.println("</body>");
 }

 //
 // Print HTML error page
 private void pgError (PrintWriter httpOut, String errmsg) {
 httpOut.println("<body>");
 httpOut.println("<h1> ERROR: " + errmsg +
 " </h1>");
 httpOut.println("<hr>");
 httpOut.println("</body>");
 } // pgError
} // JSampleEJB class
2-28 Oracle Application Server Performance and Tuning Guide

PL/SQL Applications
PL/SQL Applications
PL/SQL cartridge users should consider the following topics when developing
their applications.

■ Database Access Descriptors (DADs)

■ Nested Tables

Database Access Descriptors (DADs)
Each PL/SQL cartridge server, on startup, attempts to connect to the database spec-
ified by each Database Access Descriptor (DAD) listed in the Oracle Application
Server configuration. To save time, you should restrict the number of DADs on
each Oracle Application Server node, listing only those needed by the applications
on that node. See the Administration Guide for more information on creating and
managing DADs.

Nested Tables
PL/SQL provides the ability to create tables. To build PL/SQL tables, you build a
table that gives the data type of the table, as well as the index of the table. The
index of the table is the binary integer ranging from -2147483647 to +2147483647.
This table index option is known as sparsity, and allows meaningful index numbers
such as customer numbers, employee number, or other useful index keys. Use
PL/SQL tables to process large amounts of data.

PL/SQL provides TABLE and VARRAY (variable size array) collection types. The
TABLE collection type is called a nested table. Nested tables are unlimited in size
and can be sparse, which means that elements within the nested table can be
deleted using the DELETE procedure. Variable size arrays have a maximum size
and maintain their order and subscript when stored in the database. Nested table
data is stored in a system table that is associated with the nested table. Variable size
arrays are suited for batch operations in which the application processes the data in
batch array style. Nested tables make for efficient queries by storing the nested
table in a storage table, where each element maps to a row in the storage table.
 Designing Performant Applications 2-29

PL/SQL Applications
2-30 Oracle Application Server Performance and Tuning Guide

 Sizing and Configu
3

Sizing and Configuration

This chapter provides tips for sizing and configurations which can improve your
ability to meet performance goals. It also provides an overview of performance fac-
tors, such as CPU and I/O issues, for your operating system and your hardware.

Contents
■ Installation Requirements

■ Sizing your Hardware and Resources

■ Determining User Population

■ Determining CPU Requirements

■ Determining Memory Requirements

■ Performance Factors
ration 3-1

Installation Requirements
Installation Requirements
The following table describes the minimum hardware requirements for an Oracle
Application Server installation.

Table 3–1 Hardware requirements

Your actual requirements depend on your web applications and the number of
users that are actively using the site during peak hours. See the Oracle Application
Server Installation Guide of your respective platform for additional information
about the hardware and software requirements.

Sizing your Hardware and Resources
In addition to the minimum installation recommendations, your hardware
resources need to be adequate for the requirements of your specific applications. To
avoid hardware-related performance bottlenecks, each hardware component
should operate at no more than 80% of capacity.

Processor and memory resources in particular should be more than adequate to
handle the maximum traffic that your network connections can handle. If your net-
work becomes a bottleneck, you can upgrade to faster network interface cards, or
install multiple network interface cards on each machine.

For smaller workloads, a single Oracle Application Server node meeting the hard-
ware recommendations can run listeners, cartridge servers, and databases.

See “Monitoring Performance Statistics” on page 5-1 to learn how to assess your
Oracle Application Server performance.

Hardware Item Required

CPU A Sun UltraSPARC II processor or Pentium
Pro at 200 Mhz

Memory 128 MB

Disk Space 500MB

Swap Space 256 MB

Network Connection 100 Mbps per second
3-2 Oracle Application Server Performance and Tuning Guide

Determining Memory Requirements
Determining User Population
The amount of hardware resources required varies based on your individual appli-
cation. A common mistake is to use resource estimates that do not incorporate user
“think time” and network latencies. If you have deployed an application using an
older version of Oracle Application Server, you probably have some idea of the rela-
tionship between the number of potential users and the number of actual concur-
rent users.

Determining CPU Requirements
As with memory resources, the amount of CPU resources varies based on the appli-
cation. You can assume a base amount of 20msec of CPU time per request on a 336
Mhz Solaris system (10 for CWeb). For example, if you require your system to han-
dle 200 requests a second, then you need 4 processors to meet the requirement.

Total CPUs= (200 requests/sec X 20msec CPU time per request)/1000 (msec/sec)
Total CPUs= 4 CPUs

Determining Memory Requirements
A way to determine the amount of memory required on an Oracle Application
Server is to determine the following:

Memory for Non-OAS Software and Operating System

Fixed Memory Cost

Variable Memory Requirements

Number of Concurrent Executing Users

Cost per JVM for Java- based applications

Memory for Non-OAS Software and Operating System
When you use operating system tools such as ps -elf or ps -aux on UNIX to look at
the size of non-Oracle Application Server processes, you may notice that the pro-
cesses seem relatively large. To interpret the statistics shown, you must determine
how much of the process size is attributable to shared memory, heap, and execut-
able stack, and how much is the actual amount of memory the given process con-
sumes.

Refer to your operating system hardware and software documentation for more
information on measuring and tuning operating system memory usage.
 Sizing and Configuration 3-3

Determining Memory Requirements
Fixed Memory Cost
In sizing systems to improve your performance, you need to take into consider-
ation the memory consumption of processes other than the cartridge processes plus
any operating system overhead. On Solaris 2.6 system with 1 GB of RAM, a test of
concurrent 50 users (not including think time) the memory consuption for pro-
cesses other than the cartridge server processes was 50.5 MB (90.9 MB virtual mem-
ory).

The following table provides an example of the fixed memory consumption of the
various Oracle Application Server processes:

In an idle system, where memory resources are freely available, your operating sys-
tem statistics may indicate that the resident memory usage is closer to the virtual
size. As users place more load on the system, the operating system reclaims
unneeded memory from these processes and the amount of resident memory they
consume decreases. If you are monitoring your own system, take snapshots of fixed
processes at varying usage levels.

Table 3–2 Fixed memory cost of running Oracle Application Server processes

Process Resident Memory (MB) Virtual Memory (MB)

oassrv 14 28

oasorb 4.5 5.9

wrksf 15 26

otsfacsrv 7 14

oraweb 10 17

FIXED COST 50.5 90.9

Note: The oraweb process does not include memory for the
admin and node manager listeners as these will be infrequently
accessed.
3-4 Oracle Application Server Performance and Tuning Guide

Determining Memory Requirements
You can monitor memory usage of a process in UNIX by using the ps or top com-
mand.

Variable Memory Requirements
The amount of memory required per user varies on your individual application
and its type (JServlet or PL/SQL). However, as a starting point, you can assume
that each active user consumes a t least 150K to 200K for Java or PL/SQL applica-
tions, and 100K for CWeb applications, plus the size of the server processes.

In addition, for lightly loaded systems, assume one process per CPU. For heavily
loaded systems, assume two to three processes per CPU. For Java applications, the
base process is approximately 12-15 MB.

The amount of memory required for your application also depends on the follow-
ing:

■ Size of your own applications.

■ Amount of data you want to cache if using the JServlet session cache.

■ Number of server processes and threads created by OAS to service your
request.

Table 3–3 Resources required for various applications

Application
Users
(no think time)

Total Resident
Memory (MB)

Variable Memory
per thread (KB)

CPU time per
request (msec)

JServlet 100 15 150 ~20

PL/SQL 100 15 200 ~20

CWeb (no database) 100 9.2 103 ~10

Note: Total Resident Memory is equal to the wrks resident mem-
ory when the system is configured with one server process and one
instance.
 Sizing and Configuration 3-5

Determining Memory Requirements
Number of Concurrent Executing Users
In determining memory requirements, you also need to consider the number of con-
current executing users (not the total user population) times the cost per user.

The following table provides an example of the impact of think time and service
time on the concurrency and resulting performance of a system:

Service Time in Seconds - elapsed time to complete the operation measured for a
single user.

Range of Users - the number of users measured on the server, taken in snapshots
through the measurement.

Average Response Time - response time measured at the client under load.

Requests per Second - throughput for the entire server.

Cost per JVM for Java- based applications
Although the Policy Manager controls the number of server processes based on the
load and available resources on the system, you can estimate 1-2 servers per appli-
cation per CPU. The exact number will vary based on a variety of factors.

Java applications consume more memory than other types of applications. The typi-
cal size of a Java Virtual Machine (JVM) is 9-12 MB of resident memory.

Table 3–4 Concurrent Executing Users

Number of
Users

Think
Time
(sec)

Service
Time
(sec)

Range
of users

Average
response
 Time
(sec)

Requests
per
Second
(throughput)

CPU
Utilization
(%)

100 0 1 100 3.5 28 100

100 1 1 40-100 2.3 29 97

100 10 1 30-40 1.2 9 58

100 10 2 40-60 2.2 8 77
3-6 Oracle Application Server Performance and Tuning Guide

Performance Factors
Performance Factors
Performance problems tend to be interconnected rather than isolated. For example,
cache problems may show up as issues of CPU, memory, or I/O. This section pro-
vides an overview of the major factors that influence Oracle Application Server per-
formance:

■ Insufficient Memory

■ Insufficient CPU Resources

■ Insufficient I/O

■ Network Constraints

■ Software Constraints

Insufficient Memory
Some memory problems appear to be I/O problems. There are two kinds of mem-
ory requirements: Oracle Application Server and system. For more information
about improving memory requirements for OAS, see Determining Memory
Requirements.

Oracle Application Server memory requirements impact the system requirements.
Memory problems may be the cause of all the paging and swapping that goes on in
the machine. Make sure that your system does not start swapping and paging. The
whole system should be able to run within the limitations set by internal memory.

On the system level you can trim the number of processes and/or the amount of
memory each process uses. You can also identify which processes are using the
most memory.

Insufficient CPU Resources
In a CPU-bound system, the CPU resource is completely used up, service time is
too high and you want to achieve more. Alternatively, you have too much idle
time, want to achieve more, and the CPU is not completely used up. There is room
to do more: you need to determine why so much time is spent waiting.

To diagnose insufficient CPU, you must check CPU utilization by your entire sys-
tem, not only utilization by Oracle Server Application processes. At the beginning
of a workday, for example, the mail system may consume a very high amount of
the available CPU, while employees check their messages. Later in the day, the mail
system may be much less heavily used, and its CPU utilization will drop accord-
ingly.
 Sizing and Configuration 3-7

Performance Factors
Workload is a very important factor when evaluating your system’s level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time may be understandable and acceptable. Thirty percent utilization at a
time of low workload may also be understandable. However, if your system shows
high utilization at normal workload, there is not room for peak workload. You have
a CPU problem if idle time and time waiting for I/O are both close to zero (less
than 5%) at a normal or low workload.

Insufficient I/O
Be sure to evenly distribute I/O across disks and channels.

■ channel bandwidth: number of I/O channels

■ device bandwidth: number of disks

■ device latency: latency will be part of your wait time

I/O problems may result from the limitations of your hardware configuration. Your
system needs enough disks and SCSI busses to support the transaction throughput
you desire. You can evaluate the configuration by figuring the number of messages
your disks and busses can support, and comparing that to the number of messages
required by your peak workload.

If the response time of an I/O becomes too high, the most common problem is that
the wait time has gone up (response time = service time + wait time). If wait time
goes up, it means that there are too many I/O requests for this device. If service
time goes up, this normally goes hand in hand with a larger I/O, so you write more
bytes.

The different background processes perform different kinds of I/O, and each pro-
cess have different I/O characteristics. Some I/O processes read and write in the
block size of the database, some read and write in larger chunks. If service time is
too high, stripe the file over different devices.
3-8 Oracle Application Server Performance and Tuning Guide

Performance Factors
Network Constraints
Network constraints are similar to I/O constraints. You need to consider:

■ network bandwidth: each transaction requires that a certain number of packets
be sent over the network. If you know the number of packets required for one
transaction, you can compare that to the bandwidth to determine whether your
system is capable of supporting the desired workload.

■ message rates: you can reduce the number of packets on the network by batch-
ing them up rather than sending lots of small packets.

■ transmission time

As the number of users and the demand rises, the network can sometimes quietly
become the bottleneck in an application. You may be spending a lot of time waiting
for network availability. Use available operating system tools to see how busy your
network is.

Software Constraints
Operating system software determines:

■ the maximum number of processes you can support

■ the maximum number of processes you can connect

Before you can effectively tune Oracle Application Server, you must ensure that the
operating system is at its peak performance. Work closely with the hardware/soft-
ware system administrators to ensure that Oracle Application Server is allocated
the proper operating system resources.

Note: On NT systems there are no pre-set or configurable maximum numbers of
processes that can be supported or connected.

See Also: Operating system tuning is different for every platform. Refer to your
operating-system hardware/software documentation as well as your Oracle operat-
ing system-specific documentation for more information.
 Sizing and Configuration 3-9

Performance Factors
3-10 Oracle Application Server Performance and Tuning Guide

 Tuning Oracle Application Server Components and Param
4

Tuning Oracle Application Server

Components and Parameters

This chapter discusses configurations and parameters which can improve perfor-
mance.

Contents
■ Tuning Processes

■ Tuning Listeners

■ Tuning Cartridges

■ Tuning Logging

■ Tuning Security

■ Tuning Operating System and Network
eters 4-1

Tuning Processes
Tuning Processes

File Descriptors per Process
Make sure that the limit on file descriptors per process is set to the maximum
(1024) before starting Oracle Application Server. This allows your listeners to main-
tain as many open connections as possible.

Using csh
To find the current limit, enter:

limit descriptors

To set the file descriptors to the maximum, enter:

unlimit descriptors

Using ksh
To find the current limit, enter:

ulimit -n

To set the file descriptors to the maximum, enter:

ulimit -n 1024

Refer to your operating system for the proper command.

Distributing the Authentication Server Processes
The Authentication Server component of Oracle Application Server handles secu-
rity on behalf of dispatchers and cartridges/components. When a dispatcher
receives an HTTP request requiring access to a protected virtual path, it contacts
the Authentication Server and waits for its response to determine whether the
request can be filled.
4-2 Oracle Application Server Performance and Tuning Guide

Tuning Processes
You can run the Authentication Server on machines other than the primary node,
and you can run multiple copies of the Authentication Server. The main reasons for
doing this are performance and reliability. Consider the following points:

■ If the primary node is running many processes and resources on the node are
scarce, you might get better performance if you move the Authentication
Server to a less busy machine.

■ If you are using the Oracle database server to authenticate clients, you can
improve performance if you move the Authentication Server to the same
machine as the database.

■ If you have only one Authentication Server and several clients are requesting
authentication, then the requests are queued. You can improve this bottleneck
by running multiple copies of the Authentication Server.

■ If you are running multiple copies of the Authentication Server on different
machines and one machine fails, clients can still access the remaining Authenti-
cation Servers.

The services for the Authentication Server are:

■ ORAWEB40_wrbasrv - the Authentication Broker service

■ ORAWEB40_wrbahsrv - the Authentication Provider service

Installing the Authentication Server on Remote Nodes
To run the Authentication Server on a remote node, install Oracle Application
Server on the remote node. During installation, select the multi-node option, then
select “remote”, and then select “WRB” when prompted to select the components
to install on the remote node.

During installation of the Web request Broker (WRB) on the remote node, you need
to provide the name of the primary node.
 Tuning Oracle Application Server Components and Parameters 4-3

Tuning Listeners
Tuning Listeners
This section contains suggestions and recommendations for improving the perfor-
mance of listeners.

Multiple Listeners
Each listener can accommodate a maximum number of concurrent connections.
This number varies based on operating system restrictions. For specific numbers,
see the appropriate documentation for your platform.

To distribute the request load on a site, create multiple listeners on the site, each lis-
tening on a different TCP port. On multiprocessor machines, this increases the
throughput of your Oracle Application Server site by allowing more concurrent
connections.

Files in a Directory
Avoid storing a large number of files in a directory served by a listener. The more
files that are stored in a directory, the longer it takes to search the directory for a
requested file. To store a large number of files, distribute the files among several
directories, minimizing the size of each.

Oracle recommends that you store no more than 1000 files in each directory.

Tuning Web Listeners
Consider the following performance suggestions:

Disable DNS Resolution
For Web Listeners that do not support domain-based restriction, you can reduce
request latency by disabling DNS resolution. To do this:

1. Connect to the Oracle Application Server Welcome page and click on the OAS
Manager icon.

2. Expand the tree structure under the site you want to configure (“website40” by
default).

3. Click on HTTP Listeners in the left frame.

4. Expand the tree structure under the www listener you want to configure.

5. Click on Network.
4-4 Oracle Application Server Performance and Tuning Guide

Tuning Listeners
Figure 4–1 Network Form

6. From the DNS Resolution pull-down menu, choose NEVER.

7. Click Apply.

8. Reload the www listener.

a. Click on HTTP Listeners in the left frame.

b. Select the modified www listener and click the Reload button .

Note: If you disable DNS resolution, the listener will be unable to
perform domain-based restriction. If the listener must support this
kind of restriction, choosing LAZY or LAZY_WITH_CGI from the
DNS Resolution pull-down menu is a good compromise.
 Tuning Oracle Application Server Components and Parameters 4-5

Tuning Listeners
Adjust the Maximum Number of Connections and Configure Automatic Redirection
You can specify a maximum number of requests that an Oracle Web Listener can
concurrently handle. The default value is 500 for both NT and UNIX versions. The
maximum number of connections on NT is 2000. This number is limited by system
resources. The maximum for UNIX is 700, assuming your operating system is set
up to have 1024 file descriptors per process. (For more information, see “File
Descriptors per Process” on page 4-2.)

You can also specify the URL of another listener to which any requests in excess of
this number should be redirected. For example, if a listener's maximum number of
requests is set to 100, the 101st request is sent back to the browser with a redirection
status and the URL of the second listener. The browser interprets this status and
sends a request to the second listener. This operation is transparent to the user of
the browser.

Listener redirection is not free. The response time for an individual user may actu-
ally increase due to the extra network overhead. Because a user’s request must
travel from the client, to listener A, back to the browser, and then to listener B, it
incurs two additional network hops.

Figure 4–2 Listener redirection

1. Client sends a request.

2. The Listener A redirects the request to the browser.

3. Request goes back for process to Listener B.

Client

Listener A

Oracle Application Server

①
②

4. Response from Listener B.

③
④

Listener B
4-6 Oracle Application Server Performance and Tuning Guide

Tuning Listeners
Listener redirection works best when the cost of the redirection is amortized across
multiple subsequent accesses. Once the browser receives the URL for the second lis-
tener, it caches this information and uses it in resolving subsequent requests for
URLs with paths relative to the initial page.

Because of the additional network overhead, you should only use redirection if the
throughput limits of the listener have been reached. You can use sar, or one of the
other system utilities discussed in the previous chapter to determine whether this is
the case. If the listener can handle more requests, but is refusing them, increase the
"Maximum # of Connections" accordingly. If it is already at its maximum for the
platform Oracle Application Server is running, or if you have determined that the
throughput limit has been reached, configure the listener to redirect additional
requests to a listener on a different host/port.

Automatic redirection will not improve performance (and can even worsen perfor-
mance) under the following situations:

■ The load on the system does not exceed the capacity of the initial listener.

■ The requests are for stand-alone static pages or small cartridges, where each
request requires a redirection.

To adjust the maximum number of connections allowed concurrently, and if neces-
sary to configure automatic redirection:

1. Connect to the Oracle Application Server Welcome page and click on the OAS
Manager icon.

2. Expand the tree structure under the site you want to configure (“website40” by
default).

3. Expand the tree structure under the www listener you want to configure.

4. Click on Network.

5. In the Maximum # of Connections text field, enter the number of connections
your system can handle simultaneously (or the maximum permitted).

6. If automatic redirection is necessary, then in the URL of Redirection Server text
field, enter the URL of the listener you want to handle redirected requests from
this listener.

7. Click Apply.

8. Reload the www listener.

a. Click on HTTP Listeners in the left frame.

b. Select the modified www listener and click the Reload button .
 Tuning Oracle Application Server Components and Parameters 4-7

Tuning Listeners
Minimize Directory Rescans
By default, an Oracle Web Listener rescans a directory looking for new, changed,
and deleted files every time the directory is accessed. Because most directories do
not change frequently, it is usually acceptable to rescan directories only once per
hour, eliminating the per-access rescan overhead. To adjust the Rescan Interval:

1. Connect to the Oracle Application Server Welcome page and click on the OAS
Manager icon.

2. Expand the tree structure under the site you want to configure (“website40” by
default).

3. Click on HTTP Listeners in the left frame.

4. Expand the tree structure under the www listener you want to configure.

5. Click on Server.

Figure 4–3 Server Form

6. In the Rescan Interval text field, enter 3600 for the number of seconds (one
hour).
4-8 Oracle Application Server Performance and Tuning Guide

Tuning Listeners
7. Click Apply.

8. Reload the www listener.

a. Click on the HTTP Listeners in the left frame.

b. Select the modified www listener and click the Reload button .

Keep Alive Timeout
This parameter allows you to determine how long the listener waits before timing
out a connection. If this value is low, the listener will be disconnecting and recon-
necting frequently. This should be set so that the listener waits a reasonable amount
to time before closing a connection. To configure the Keep Alive Timeout:

1. Connect to the Oracle Application Server Welcome page and click on the OAS
Manager icon.

2. Expand the tree structure under the site you want to configure (“website40” by
default).

3. Click on HTTP Listeners in the left frame.

4. Expand the tree structure under the www listener you want to configure.

5. Click on Server.

6. In the Keep Alive Timeout field, enter the number of seconds.

(The default is 10 seconds.)

7. Click Apply.

8. Reload the www listener.

a. Click on the HTTP Listeners in the left frame.

b. Select the modified www listener and click the Reload button .
 Tuning Oracle Application Server Components and Parameters 4-9

Tuning Cartridges
Tuning Cartridges

Load Balancing Schemes
Oracle Application Server provides two different load balancing schemes for appli-
cations, priority-based, and minimum and maximum number of cartridge instances.

(By default, Oracle Application Server uses priority-based load balancing.)

Changing the Load Balancing Scheme
By default, Oracle Application Server runs in the priority-based scheme, to change
your load-balancing scheme:

1. Connect to the Oracle Application Server Welcome page and click on the OAS
Utilities icon.

2. Expand the Utilities folder and click on Tuning.

3. Select the load balancing scheme from the Load distribution scheme pull-down
menu.

Priority Priority tuning manages and allocates your system resources auto-
matically based on the priority level you set for your applications
and cartridges. The priority levels are High, Medium, Low, and Dis-
cretionary.

Min/Max Min/Max tuning is a manual task requiring you to set minimum
and maximum number of instances at the application and cartridge
levels.
4-10 Oracle Application Server Performance and Tuning Guide

Tuning Cartridges
Figure 4–4 Choosing a load distribution scheme

4. Restart Oracle Application Server.

Priority-Based Load Balancing

Introduced in Oracle Application Server 4.0.8, priority-based tuning provides auto-
matic load balancing for your applications and cartridges. This is the most efficient
and labor-saving method for handling load balancing. Unless you are familiar with
versions of Oracle Application Server prior to 4.0.8 (where Min/Max was the only
way to load balance), Oracle recommends that you use priority-based load balanc-
ing.

Each application and cartridge is automatically set to Medium. You should adjust
each cartridge or application depending on your needs.

Set the load balancing priority classification at the application or cartridge level to
High, Medium, Low, or Discretionary. The number of processes, threads, and
instances is automatically determined based on the request load and priority level
of the application and components.

Note: The instructions in this section apply only to cartridges that
are both globally thread-safe and instance-context thread-safe.
 Tuning Oracle Application Server Components and Parameters 4-11

Tuning Cartridges
Requests from high priority applications or cartridges receive preferential treat-
ment over requests from lower priority applications or cartridges. Requests for
lower priority applications or cartridges are serviced when sufficient resources
exist.

Table 4–1 explains how requests for applications and cartridges are prioritized
depending on their respective priority level.

For instructions on selecting a process model, see "Changing the Load Balancing
Scheme".

Note: Cartridges inherit their priority setting from their applica-
tion when an explicit cartridge priority is not set.

Table 4–1 Priority levels

Priority Description

High The system will try to allocate, whenever possible, more resources
and give preference to service these requests over lower priority
Cartridges (i.e. Medium, Low or Discretionary). A similar reason-
ing is applied if you choose Medium or Low priority.

Medium The system default setting, these requests are serviced if no high
priority requests are waiting for resources.

Low Requests are only serviced when adequate resources are available.

Discretionary The system only services these requests if there are enough
resources available. Moreover, these cartridges could be shutdown
without being serviced if resources are still required by High,
Medium or Low priority Cartridges. The main difference between
Low and Discretionary Cartridges, is that Low priority Cartridges
cannot be shutdown.
4-12 Oracle Application Server Performance and Tuning Guide

Tuning Cartridges
Min/Max Based Load Balancing
Establishing the Min/Max settings allows you to manually set configuration param-
eters for your applications and cartridges. You can set upper and lower bounds for
instances and threads to balance cartridge servers, instances, and threads based on
CPU utilization.

Oracle Application Server uses Cartridge Server Processes (wrks), which improve
performance by invoking multiple threads/instances of a particular cartridge.
Figure 4–5 shows a flowchart of cartridge instance lifecycle:

1. A client sends a request for a cartridge to the Listener.

2. The Listener sees that the request is for a cartridge, and sends it to the Dis-
patcher.

3. If the Dispatcher knows of no free cartridge instances for that cartridge, it
sends the request to the Web Request Broker (WRB).

4. The WRB then directs one or more cartridge server processes to allocate car-
tridge instances (also known as “threads”). The WRB tries to ensure that each
cartridge server process allocates approximately the same number of cartridge
instances for a particular cartridge for each node.

5. Each cartridge server process creates the appropriate number of cartridge
instances for its node.

6. The cartridge instances are then registered with the Dispatcher, so that the Dis-
patcher can direct requests to them.

When subsequent requests for the cartridge come in, the Dispatcher sends the
requests to unoccupied cartridge instances.
 Tuning Oracle Application Server Components and Parameters 4-13

Tuning Cartridges
Figure 4–5 Cartridge instance flowchart

1. Client A sends a request for the PL/SQL cartridge.

2. The Listener forwards the request to the Dispatcher.

3. The Dispatcher knows of no free instances of the PL/SQL cartridge, forwards request to the WRB.

4. The WRB instructs a PL/SQL cartridge server process to launch instances of the PL/SQL cartridge.

5. The new instances of the PL/SQLcartridge are registered with the Dispatcher.

6. Client B sends a request for the PL/SQL cartridge.

7. The Listener forwards the request to the Dispatcher.

8. The Dispatcher sends the request directly to an available instance of the PL/SQL cartridge.

Oracle Application Server

Listener

Dispatcher

WRB

PL/SQL Cartridge Server Process

①

②

③

④

Instance 1 of PL/SQL

Instance 2 of PL/SQL

Instance 3 of PL/SQL

Client A

⑤

Client B
⑥

⑦

⑧

4-14 Oracle Application Server Performance and Tuning Guide

Tuning Logging
Tuning Logging

CLF and XLF Logging
Most web sites track the site access statistics by collecting Common Log Format
(CLF) data, which can be processed and analyzed with a wide range of tools.

In Oracle Application Server, CLF logging data is collected by default. You can con-
figure site access logging from the Oracle Application Server Manager in the XLF
form under logging. The XLF logging form also provides the ability to specify
which site access statistics you want to collect (CLF is the default). OAS will pro-
duce a single merged log for all active listeners in an OAS site.

You can substantially improve your listener performance, however, by opting to
have each listener log its own access statistics (both CLF and XLF) separately as fol-
lows:

1. Turn XLF logging to OFF in the logging form by using the Oracle Application
Server Manager.

2. Shut down Oracle Application Server.

3. Edit the listener configuration file for each port number on which you have a
listener that you want to access logging:

cd $ORAWEB_ADMIN/$ORAWEB_SITE/httpd_<host-name>/<listener-name>
<edit> sv<listenername>.cfg

4. Check that a line such as the following is found in the [MultiPort] section of the
file.

ANY <port-number> NORM <host-name>.<domain>/ <log-dir> NONE

5. Add the [ConnectionLogs] section in the file if there is none. Add one just
above the [Server] section, and a line which says what to store in what file:

<clf-log-file> CLF {clf}

6. Restart the Oracle Application Server.

The above steps improve performance significantly even on OAS sites with a single
listener.
 Tuning Oracle Application Server Components and Parameters 4-15

Tuning Logging
Example:
1. Turn XLF logging to OFF in the logging form by using the Oracle Application

Server Manager.

a. From the Welcome page, click on OAS Manager.

b. Expand the site to be edited.

c. Expand Oracle Application Server.

d. Expand Logging and click on XLF.

e. In the Logging field, choose OFF.

f. Click Apply.

2. Shut down Oracle Application Server.

3. Edit the listener configuration file:

cd $ORAWEB_ADMIN/$ORAWEB_SITE/httpd_myhost/www
vi svwww.cfg

4. Check for the following line under [MultiPort] section.

ANY 80 NORM myhost.mysite.com/ /var/log/oas/www NONE

If you do not find the line, add a line specifying the directory in which you
want your log files.

5. Add the [ConnectionLogs] section just above the [Server] section:

;
[ConnectionLogs]
clf.log CLF {clf}
xlf.log XLF {time cs-method cs-uri}
;
[Server] ...

This results in the creation of a standard CLF log file clf.log and a special pur-
pose xlf.log being created in the directory in the fourth field of the [MultiPort]
entries.

The XLF line shows how additional extended log format (XLF) data can be col-
lected if desired. For more information about XLF formats, see the Oracle Appli-
cation Server Administration Guide.

6. Restart the Oracle Application Server.
4-16 Oracle Application Server Performance and Tuning Guide

Tuning Logging
System Logging
To minimize request latency on a stable system, you can specify that the System
Logging Service log messages for only the most severe errors. You may want to use
more extended logging for debugging purposes during your development process,
but since log messages translate into physical I/O, it is recommended to use only
logging errors for productions systems.

1. From the Welcome page, click on OAS Manager.

2. Expand the site to be edited.

3. Expand Oracle Application Server.

4. Expand Logging.

5. Click on System.

6. In the Logging Directory text field, enter the full path of a directory on a disk
that is not used to store Web or application data.

7. In the Logging File field, enter the name of the logging file.

8. From the Severity Level pull-down menu, choose 1.

9. Click Apply.

10. Select Oracle Application Server in the left frame and click Reload.

Monitoring Error and Log Files
Excessive or repeated errors consume system resources and slow response time.
Regular checking of files helps detect inefficiencies in Oracle Application Server
configuration.

For example, a repeated HTTP Error 500 might be caused by an imagemap tag with
undefined areas; every client that clicks in one of these areas generates the error.
You can eliminate the problem by eliminating the “holes” in the imagemap tag.
Another example is a repeated HTTP Error 404, which is usually caused by a bro-
ken hypertext link.

Regular monitoring of log files provides a good understanding of how clients
access your site. You can use this information to optimize allocation of hardware
and server resources. You can use tools such as WebTrends for detailed site usage
monitoring.
 Tuning Oracle Application Server Components and Parameters 4-17

Tuning Security
Do not allow your log files to grow without limit. When a log file reaches a certain
size, archive the file and start a new log file. This avoids the overhead of writing to
a large file.

To minimize disk access contention, you can also specify that system messages be
logged to a file on a disk that is not used to store Web or application data. The
default for OAS is to batch log messages and write them to disk in groups of 100.
To minimize disk I/O, leave the batch logging parameter set to “ON”.

Tuning Security

Authentication Server Modes
The two components of the Authentication Server (that is, the broker and the pro-
viders) can run in either of two modes: inmemory mode or ORB mode. The func-
tionality is the same for either mode; the differences are in performance and
opportunities for distribution. For more information, see “Authentication and
Restriction” in the Security Guide.

Tuning Operating System and Network

TCP Tuning
Because the HTTP protocol runs on top of TCP, you can significantly improve per-
formance by tuning some key TCP parameters.
4-18 Oracle Application Server Performance and Tuning Guide

Tuning Operating System and Network
The following table lists TCP parameters introduced with Solaris 2.6 and their rec-
ommended values:

For more information about these parameters, see “Harnessing the Benefits of
Solaris 2.6” on page A-3.

Table 4–2 TCP parameters (Solaris only)

Parameter Default

Recom-
mended
Value Description

tcp_conn_req_max_q 128 10240 Maximum queued
connections with a
complete handshake.
A high value prevents
tcpListenDrops in case
of a high request rate.
This must be less than
or equal to
tcp_conn_re_max_q
0.

tcp_conn_req_max_q0 1024 10240 Maximum queued
connections with a
handshake incom-
plete.

tcp_slow_start_initial 1 2 Addresses slow start
bug in Windows and
BSD TCP/IP stacks.

tcp_xmit_hiwat 8192 32768 TCP transfer window.

tcp_recv_hiwat 8192 32768 TCP receive window.
 Tuning Oracle Application Server Components and Parameters 4-19

Tuning Operating System and Network
The following table lists additional parameters you can adjust based on the number
of users and their locations relative to the server.

To set the TCP parameters described in Table 4–2 and Table 4–3, use these com-
mands:

$ su root
/usr/sbin/ndd -set /dev/tcp parameter value

where parameter is a parameter listed in the first column of the table above, and
value is a value listed in the second column. The system startup files must be edited
to make the changes survive a reboot.

Table 4–3 Additional TCP parameters (Solaris only)

Parameter Description

tcp_close wait interval This is the number of microseconds an inactive connection
will be “remembered”. The shorter this number is, the
smaller the connection table must be searched to identify a
connection.

If most users are local, then 60000ms may be sufficient. If
the user population is very wide spread, then 240000 may
be required as is recommended in RFC 1122.

tcp_conn_hash_size This is the kernel hash table size for managing active TCP
connections. A larger value makes searches far more effi-
cient when there are many open connections. On Solaris,
this value is a power of two and can be set as small as 256
(default) or as large as 262144 as is typically used in bench-
marks. A larger tcp_conn_hash_size requires more memory,
but it is clearly worth the extra investment if many concur-
rent connections are expected.

Note: The tcp_conn_hash_size parameter must be adjusted
in the /etc/system file by adding the line (modified to contain the
desired hash table size, of course). For example:

set tcp: tcp_conn_hash_size=32768

You must then reboot the system for the hash size parameter to
take effect.
4-20 Oracle Application Server Performance and Tuning Guide

Tuning Operating System and Network
For more information about these parameters and other TCP tuning for improving
performance, see Adrian Cockcroft’s Sun Performance and Tuning, 2nd Edition, 1998.
It is essential to adjust the TCP parameters appropriately because they have a 20%
to 30% impact on listener performance.
 Tuning Oracle Application Server Components and Parameters 4-21

Tuning Operating System and Network
4-22 Oracle Application Server Performance and Tuning Guide

 Monitoring Performance Sta
5

Monitoring Performance Statistics

This chapter discusses two performance monitoring tools for Oracle Application
Server. The oasomo utility allows you to monitor your entire site, from the process-
level to overall CPU usage. The flexmon utility allows you to monitor performance
statistics from the command line.

Contents
■ The oasomo Utility

■ The flexmon Utility

■ Terminology

The oasomo Utility
■ Overview

■ Running oasomo

■ oasomo Walk Through

■ Parts of the oasomo Window

■ Metric List

■ Tiered Table

■ Metrics Available for Monitoring

■ Displaying Charts

■ Viewing EJB and ECO Metrics
tistics 5-1

The oasomo Utility
Overview
The oasomo utility is a dynamic monitoring utility that tracks system resources and
monitors your site.

For a list of terms used in this chapter, see “Terminology” on page 5-32.

How does it work?
Oracle Application Server uses a C/Java API to publish an extensive list of metrics,
or performance statistics, and uses the Oracle Application Server ORB to export
metrics to the oasomo utility.

You can specify which metrics you want to monitor and configure oasomo to dis-
play them in tables and charts.

The oasomo utility also includes an EJB/ECO Performance Display tool that allows
you to monitor EJB and ECO applications with greater detail than the basic oasomo
window allows.

Running oasomo
To start oasomo, enter the command:

% oasomo

The executable is in the $ORACLE_HOME/orb/4.0/bin directory for Unix installa-
tions and in $ORACLE_HOME/orb/bin for Windows NT installations.

Figure 5–1 shows the oasomo screen at startup.

Figure 5–1 oasomo’s starting screen
5-2 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
oasomo Walk Through
The following steps offer a quick tour of monitoring an application with oasomo.
This example assumes that you have an application added to your site.

The application in this example is a JServlet application named hello. It has a car-
tridge named helloCart.

For a list of terms used in this chapter, see “Terminology” on page 5-32.

1. Start the oasomo utility.

See “Running oasomo” on page 5-2 for more information on running oasomo.

2. Start your application.

See the Developer’s Guide for your application for information on invoking it.

3. In the oasomo window, expand the hostname branch of the directory tree on the
left. In Figure 5–1, this is the oasdocs branch. This will display your host’s
Nouns. Your application’s name and PID is in this list.

A Noun is a component of an Oracle Application Server site. The host’s Nouns
in this example are Oracle Application Server processes.

4. Select your application from this list. This will bring up three of the metrics that
are available for your application: uptime, cputime, and heapsize. Descriptions
of these values can be found in Table 5–2, “Predefined process level metrics,”
on page 5-11.

A metric is a statistic that is collected for a Noun.

Alternatively, you could expand the application branch and select each of these
metrics individually.

Note: This walk through only demonstrates viewing metrics for
an application, it does not explain or describe values that these
metrics should have during normal operation or what values could
be an indication of performance problems.
 Monitoring Performance Statistics 5-3

The oasomo Utility
Figure 5–2 Application metrics in oasomo

The figure shows that for the hello application:

■ 386 seconds have passed since the process was created

■ 67440 milliseconds of CPU time have been used

■ 6968 kilobytes of heap space have been allocated.

5. To view cartridge metrics for your application, expand the application branch.
Next expand the CORBA_Objects branch. Select the element that ends with
your cartridge’s name. You may need to scroll the directory tree to the right to
see this.

Since our cartridge name is helloCart, we select the
IDL:oracle/OAS/Cartridge/Web/WebCartridge:1.0[hello/helloCart] entry. This
is shown in Figure 5–3.

The cartridge metrics given are invocation, active, active_limit and instances.
The descriptions can be found in Table 5–3, “Predefined CORBA interface met-
rics,” on page 5-12.
5-4 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Figure 5–3 Cartridge metrics in oasomo

The figure shows that:

■ helloCart’s methods have been invoked 1703 times

■ there are currently 7 invocations of helloCarts’s methods

■ there is no limit on the number of concurrent invocations for helloCart
methods (indicated with a 0)

■ there is currently one active instance of helloCart.

6. You can also view queuing metrics for your application. Under your applica-
tion’s name in the directory tree, select the ORB_Queues branch. This will dis-
play the queuing metrics for this application.

The queuing metrics given are qlen, maxMesgs, lastServed, totalWait, totalEn-
queued, maxWait, numClasses and numQueues. The descriptions can be found
in Table 5–7, “Predefined ORB queue metrics,” on page 5-14.
 Monitoring Performance Statistics 5-5

The oasomo Utility
Figure 5–4 Application queuing metrics in oasomo

Figure 5–4 shows the following about this process of the hello application:

■ the total queue length is 0

■ there have not been more than 6 messages in any one queue at any time

■ it has been 5297 milliseconds since a message has been serviced from the
queue

■ messages have spent a total of 80065 milliseconds waiting in the queue

■ 1978 messages have been queued

■ no message has waited for more than 234 milliseconds to be serviced from
the queue

■ there is only 1 queue class

■ there are 6 queues.

Parts of the oasomo Window
This section discusses the different parts of the oasomo main window:

■ oasomo Menu Bar

■ Directory Tree

■ Status Message Area

■ ToolTips
5-6 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
oasomo Menu Bar
The Menu Bar provides the File, Options and Help menus.

The File menu presents three options:

■ View EJB/ECO Metrics — to start the EJB/ECO Performance Display tool. For
information, see “Viewing EJB and ECO Metrics” on page 5-17

■ Print — to print the window

■ Exit — to exit oasomo and close the window.

The Options menu presents three checkboxes:

■ Show Data as Rate — displays the integer metrics in tables as a rate (value/sec-
ond). oasomo calculates the rate based on an average over the previous five sec-
onds. If no new data was received for a metric within the past five seconds, its
entry will be left blank in the table. With this option selected oasomo displays a
“-” for floating point and string values.

■ Display Long Names — By default, oasomo displays the shortest possible
name in the ParentNode column. Selecting the Display Long Names checkbox
expands the ParentNode names as full path names for the path in the oasomo
directory tree.

■ Directory Tree — When this checkbox option is deselected, oasomo fills the
entire display with the Metric List or Tiered Table data (and hides the directory
tree).

The Help menu provides options for displaying online help. The menu presents
choices for displaying the online Help contents, the index, and the search dialog.
There is also an option for hiding any visible help windows.

Directory Tree
In the left column, the directory tree displays a hierarchical directory of all cur-
rently available Nouns and metrics for the current site. This list is dynamic, so that
oasomo updates the directory list as programs start, and removes entries when pro-
grams stop.

When oasomo starts, only the hostname is shown. Expand its branch by clicking on
the plus sign (+) next to its name. This will display all of the Process Nouns that are
available for monitoring.

Selecting a Noun starts a subscription for all the Noun’s metrics but not the metrics
for any sub-Nouns. To start a subscription for a Noun or metric, select it. Once a
 Monitoring Performance Statistics 5-7

The oasomo Utility
subscription is active, oasomo begins displaying metrics in the Metric List or Tiered
Table.

Status Message Area
The bottom text area displays status messages. Note that the time status on the
right side of the status area does not display the current system time. The time
shown is the last update time for any oasomo display (hidden or visible). If data is
not being collected, or the push interval is long, the clock updates infrequently, or
not at all.

ToolTips
oasomo provides ToolTips for items in the Metric List and the Tiered Table. When
the mouse moves over an item, and help is available, oasomo provides descriptive
text about the item.

Metric List
Figure 5–5 shows a sorted Metric List with values supplied for each metric:

Figure 5–5 Sorted Metric list

The Metric List form contains three columns and up to 100 rows:

Column Description

ParentNode Displays the metric’s parent Noun.

Metric The statistic being gathered and its measurement unit.

Value The current metric value.
5-8 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
This section describes the tasks available using the Metric List form:

Tiered Table
A Tiered table allows you to see more than one level, or tier, of the directory at one
time. The Tiered Table shows a selected Noun and its metric values as well as its
children and their metric values. A Tiered Table contains a top row showing the
selected Noun’s metrics. The bottom rows show the metrics for Nouns contained
within a selected Noun. When a Noun contains only Nouns, the top row in the
Tiered Table displays blank values.

Table 5–1 Metric list form

Action Description

Adding
Metrics

Click on a Noun or metric in the directory tree to add items to the Metric
List. If you select a Noun, then oasomo adds all the Noun’s metrics to the
Metric List.

Removing
Metrics

Remove metrics by clicking the Clear All button or by selecting one or more
rows in the Metric List, and then clicking the Delete Row button. If metrics
are not available, oasomo disables the Delete Row and Clear All buttons.

Sorting
Metrics

oasomo displays path names in the ParentNode column, metric names in
the Metric column and metric values in the Value column. Enable column
sorting by clicking on a column heading. Sort mode sorts columns in
descending order. When you enable sorting, the label for the column will be
hilighted. See Figure 5–5 for an example of a sorted Metric List.

Note: If you add metrics to a sorted list, they will be added to the bottom of
the list. They will not be sorted.

Setting the
Push Rate

oasomo displays the Set Interval button and the Push Interval value in the
control area at the bottom of the Metric List or the Tiered Table. The push
interval shows the time in seconds for the data update interval and the
sample interval. Setting this value lower tells oasomo to update the
displayed values more frequently.

update rate = 1 / interval

Setting the push interval higher will improve performance.

oasomo rejects Push Interval values if resources are limited, the supplied
value is small, or if you enter an invalid interval (invalid intervals include
negative values and very large or very small values).
 Monitoring Performance Statistics 5-9

The oasomo Utility
Figure 5–6 oasomo tiered table

Figure 5–6 shows a Tiered Table display for a Post Office demonstration program.
The top row shows the Post Office metrics: creates, deletes, lookups, and total mail-
boxes. The bottom rows show the Nouns, or in this example the individual post
box Nouns within the Post Office, including: mail10, mail11, and mail12.

Columns in the bottom rows of the Tiered Table present metric values for each
unique metric. Figure 5–6 shows values for the following metrics: reads, receives,
and messages. In a Tiered Table, blank fields are possible for rows that do not con-
tain a metric that is common across all Nouns.

To clear or remove values from a Tiered Table use the directory tree to select a new
Noun. The Tiered table updates to display values for the currently selected Noun.

When new metrics are added to a Noun, due to new processes being added,
changes in the state of the program containing the instrumentation, or for other rea-
sons, oasomo updates the table to reflect the changes. If a row does not contain
valid metrics because a subscription is no longer active, oasomo grays out the row.

oasomo supports sorting for the columns in the bottom rows of the Tiered Table.
Select sort mode for a given column by clicking on the column heading. oasomo
sorts rows in descending order and highlights the sorted column header.
5-10 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Once a Tiered Table subscription is active, you can drill up the Metric Directory
hierarchy by selecting the row label from the top row of the Tiered Table, or you
can drill down by selecting a row label from any bottom row of the Tiered Table.

Metrics Available for Monitoring
The following tables show the metrics that can be monitored for Nouns. To view
these metrics, either click on the described Noun or expand the Noun’s branch on
the directory tree and select the metric directly.

Under the hostname branch, the process Nouns are visible. Each process Noun con-
tains these metrics:

Each process when expanded in the directory tree, displays the metrics shown in
Table 5–2 and some or all of the following Nouns:

■ CORBA_Objects

■ DMS_Internal

■ Dispatcher (only for Listener processes)

■ Host_Metrics (only for Cartridge Server Factory process)

■ ORB_Queues

CORBA_Objects
Table 5–3 shows the predefined metrics which are collected for every CORBA inter-
face implementation. CORBA interface implementations are the basic building
blocks for most of the Oracle Application Server components, such as EJBs, serv-
lets, PL/SQL cartridges and internal components.

Table 5–2 Predefined process level metrics

Metric Name Description

uptime The time, in seconds, since start of process.

cputime The amount of CPU time, in CPU milliseconds, used by process.

heapsize The amount of heap space allocated by the process in kilobytes.
 Monitoring Performance Statistics 5-11

The oasomo Utility
These metrics are available through this path: hostname > process_noun >
CORBA_Objects > interface.

Table 5–4 shows the predefined CORBA_Object method metrics. If a method is
never invoked, then oasomo does not list the method or its metrics. These metrics
are available through this path: hostname > process_noun > CORBA_Objects > inter-
face > method.

DMS_Internal
The oasomo utility is able to monitor the DMS spy in each process, and displays its
performance statistics here. Within DMS_Internal, there are two Nouns: Measure-
ment and Spy.

Table 5–3 Predefined CORBA interface metrics

Metric Name Description

invocation The number of times that any of this implementation's
methods were invoked.

active The number of currently executing invocations of any of this
implementation’s methods.

active_limit The maximum allowed number of concurrently executing
invocations of any of this implementations methods.

A value of 0 means that no limit is set.
A value of -1 means that the limit is infinite.

instances The number of live objects for this CORBA implementation.

Table 5–4 Predefined CORBA method metrics

Metric Name Description

invocation The number of times that this method was invoked.

invocation_time The total time elapsed, in milliseconds, while this method was
invoked.

waitTime The total time elapsed, in milliseconds, while requests for this
method waited in ORB queues.
5-12 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Table 5–5 shows the predefined internal process metrics. These metrics are avail-
able through this path: hostname > process_noun > DMS_Internal > Spy.

Table 5–6 shows the predefined internal Measurement metrics. These metrics are
available through this path: hostname > process_noun > DMS_Internal > Measure-
ment

Table 5–5 DMS_Internal spy metrics

Metric Name Description

pubPush The number of times that process sent metric data to clients.

subscribeAttempt The number of times that a client attempted to subscribe.

subscribe The number of times that a client successfully subscribed.

cancel The number of times that a subscription was canceled.

pubListeners The number of clients listening for metric directory updates.

subscriptions The number of active subscriptions.

resourcesUsed The number of metrics per second subscribed by all clients of this
spy.

Table 5–6 DMS_Internal measurement metrics

Metric Name Description

eventCreate The number of times that an event was created.

nounCreate The number of times that a Noun was created.

nounDestroy The number of times that a Noun was destroyed.

stateCreate The number of times that a state was created.

stateDestroy The number of times that a state variable was destroyed.

eventDestroy The number of times that an event was destroyed.

sampleVal The number of times that the spy sampled any metric value.

getPub The number of times that a client requested this process’ metric list.

lastID The most recent publication ID allocated.
 Monitoring Performance Statistics 5-13

The oasomo Utility
Dispatcher
(only under the Listener processes) The Dispatcher section contains metrics for car-
tridges in your site. For each cartridge, such as app_name/cart_name, oasomo pro-
vides these metrics:

■ TotalRequestWaitTime — The cumulative time spent waiting in the dispatcher
for all requests for this cartridge type.

■ TotalRequests — The total number of requests for this cartridge type.

Host_Metrics
(only under the Cartridge Server Factory process) Within Host_Metrics, you can
subscribe to CPU or Virtual Memory metrics. The host metrics vary depending on
your platform.

ORB_Queues
The oasomo utility monitors several queue level metrics for each Oracle Applica-
tion Server process.

Table 5–7 shows the predefined queue metrics which are automatically gathered for
each process. These metrics are available through this path: hostname > process_noun
> ORB_Queues.

Table 5–7 Predefined ORB queue metrics

Metric Name Description

qlen The current total queue length.

maxMesgs The maximum number of messages contained in any one
queue at any one time.

lastServed The time elapsed, in milliseconds, since a message was
serviced from any queue.

totalWait The total amount of time, in milliseconds, that all messages
have spent waiting in queues.

totalEnqueued The total number of messages that have been queued.

maxWait The maximum amount of time (in milliseconds) that any one
message spent waiting in any queue.

numClasses The number of queue classes.

numQueues The number of queues.
5-14 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
The Queues section also displays predefined metrics which are automatically gath-
ered for each queue. These metrics are available through this path: hostname >
process_noun > ORB_Queues > queue.

Displaying Charts
A StripChart graphically displays the value of metrics over time. Figure 5–7 shows
a sample StripChart.

Figure 5–7 oasomo StripChart

Table 5–8 Predefined queue metrics

Metric Name Description

maxLength The maximum number of messages contained in the queue at
any one time.

qlen The current length of the queue.

totalQueued The total number of messages that have been sent to the queue.
 Monitoring Performance Statistics 5-15

The oasomo Utility
To bring up a Strip Chart, first select the metric or metrics you want to display from
either the Tiered Table or the Metric list, and then push the Select & Chart button. If
no metrics are selected, oasomo disables the Select & Chart button.

As oasomo receives data, at the rate specified by the Push Interval, it adds the new
data to the StripChart. Older data moves to the left and off the display; this data is
available by selecting and moving the scrollbar at the bottom of the chart (the black
bar shown in Figure 5–7).

The StripChart displays update times on the x-axis and metric value ranges on the
y-axis. The legend, found below the x-axis, displays names and symbols for the
StripChart’s metrics. Holding the cursor over a metric name in the legend displays
the metric’s full path name in the status area at the bottom of the StripChart.

Zooming In and Out
You can zoom in by pressing and holding the Shift button while left-clicking the
mouse. You can zoom out by right-clicking the mouse.

StripChart Menu Bar
The StripChart Menu Bar provides the File and View menus. The File menu pre-
sents three selections:

■ Clear Data

■ Cancel Subscription to retain old data and cancel the subscription, disabling
updates

■ Close Graph to close the StripChart and close the window

The View menu presents two options:

■ Show Data as Rate

■ Show Legend

Displaying the StripChart Legend Dialog
Clicking on a metric name in the legend displays the metric legend dialog:
5-16 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Figure 5–8 oasomo StripChart legend dialog

For each metric, the legend dialog allows you to alter any of the following: the sym-
bol shape, the symbol color, the symbol size, the line color, and the line size. A met-
ric visibility checkbox allows you to disable a metric’s StripChart display. When a
metric is not visible, its name is still available in the legend so that you can bring up
the legend dialog to make the metric visible again.

Viewing EJB and ECO Metrics
This section describes the EJB/ECO Performance Display, the dynamic perfor-
mance monitoring utility for Enterprise Java Beans (EJB) and Enterprise CORBA
Objects (ECO). It is intended for use by Oracle Application Server administrators
and EJB developers.

This utility consists of a set of screens that present performance metrics and system
organization for an Oracle Application Server site executing EJBs. The screens pro-
vide an administrator or developer easy access to performance data about EJB
applications and their components.

Note: This tool supports both EJBs and ECOs. In fact, it cannot
distinguish between EJBs and ECOs. Therefore, the remainder of
the document only refers to EJBs.
 Monitoring Performance Statistics 5-17

The oasomo Utility
Throughout this section, the following terminology is used:

■ iView — Instance View

■ cView — Class View

Figure 5–9 shows a sample EJB/ECO Performance Display window.

Figure 5–9 The viewer’s starting screen

The window has three main views, the directory tree on the left, the Instance view
(iView) on the right, and the Class view (cView) on the bottom. This section
describes these views.

Directory Tree
In the left column of the window is an expandable, scrollable tree control that pre-
sents the entire tree of Nouns and shows their containment relationships. Each
Noun type is shown alongside a graphical icon that indicates its type.

At startup, the directory tree shows the single Site and all of the site's Host Nouns.
Deeper levels of the tree may be explored by clicking the plus (+) symbol. If the tree

Note: For a definition of terms such as metric or Noun, see
“Terminology” on page 5-32.
5-18 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
is too large to fit within the directory tree frame then scroll bars appear to allow
you to scroll horizontally or vertically.

When any node is selected (with a single mouse click) in the directory tree view, the
corresponding Noun displays in the iView.

Double clicking on a node not only selects the instance, but also expands the node
in the tree (when possible).

Nodes in the directory tree may be selected with explicit mouse clicks on the icons
within the window or when you make selections in other views. For example,
selecting a row in the cView or selecting a metric in a Chart causes the correspond-
ing Noun to be selected in the directory tree.

EJBs in the directory tree are not strictly grouped according to their Java class hier-
archy but instead form a single group beneath the application node. In other words
the organization under an EJB application is a flat collection of Bean classes even
though the classes themselves may form a rich Java hierarchy.

The directory tree view is updated automatically whenever instances in the system
are created or destroyed. Oracle Application Server buffers rapid updates in the
underlying system for performance reasons, so the directory tree will update on
regular intervals (approximately 10 seconds).

Instance View (iView)
The Instance view displays all the performance metrics that are available for a par-
ticular Noun. Different Noun classes have different instance views (e.g., a Host
Noun's metrics are different from Method Noun's metrics).

The Instance view's data values are updated automatically every three seconds. If a
metric value has not changed in more than 30 seconds, then the value is painted on
a white background. If the metric value has changed more recently than 30 sec-
onds, then it is painted on a yellow background. The intensity of the highlighted
background diminishes as the data becomes older.

oasomo displays each metric in an iView with a checkbox. If you wish to create a
new chart that includes the metric or add the metric to an existing chart, select the
metric's checkbox and choose the appropriate button from the toolbar.

You may select the Noun to be displayed in the iView by selecting the Noun in the
directory tree, by selecting a cView row corresponding to the Noun, or by selecting
any of the Noun's metrics in a Chart. Whenever you select a Noun for the iView, its
directory tree node is also selected in the directory tree and the directory tree's
branch is expanded, if necessary.
 Monitoring Performance Statistics 5-19

The oasomo Utility
When a new Noun is selected for the iView, the EJB/ECO Performance Display
clears all iView checkboxes and forgets which metrics were chosen.

At startup, the iView displays the single Site Noun.

Class View (cView)
The cView allows you to view all instances of a particular metric class simulta-
neously. Each instance is represented with a single row in a scrollable table. Col-
umns of the table contain metric values for each of the metrics listed for the chosen
class. Only one class is visible at a time. The view's rows may be sorted by any of
its columns by clicking on the corresponding column header. You may select any
class from the list of available classes.

If you select the “Constrain by iView” checkbox at the top of the window, then
selecting a node in the directory tree may change the cView because the new selec-
tion may constrain the cView differently than the previous selection did.

At startup, the cView displays the Host Noun class and all sorting is turned off. To
select a different class, you select the class from the cView popup menu. To use the
cView popup menu, place the mouse pointer anywhere in the cView and right-click
the mouse button. A menu then appears that allows you to:

■ pick a new Noun class

■ choose the columns to be displayed in the cView

■ refresh the cView.

Figure 5–10 shows the cView popup:

Figure 5–10 the cView popup menu
5-20 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
If the cView is too short to fit the entire cView popup menu then the menu includes
a vertical scrollbar. If the cView is too narrow to fit the cView popup, then the tool
does not display the menu.

To choose which columns to display in the cView, select Choose Columns from the
cView popup menu. The column selection window as shown in Figure 5–11 will
appear.

Figure 5–11 Class View column selection window

To select and order columns use the shuttle controls to move column headers back
and forth between the left-hand column of the shuttle and the right. Headers that
appear in the left column of the shuttle will be made invisible in the cView, those
on the right will be visible in the order in which they appear in the shuttle control.
Press the OK button to accept the choices or Cancel to leave the cView unchanged.

The EJB/ECO Performance Display remembers the current column choices for each
of the Noun classes, so if you select a new Noun class for the cView and then return
to the previously displayed class, then the previously selected columns will reap-
pear.

The cView's cells display the metric values. The EJB/ECO display highlights cView
metrics in the same way as iView metrics and updates the data values every three
seconds. If a metric value has not changed in more than 30 seconds, then the value
is displayed on a white background. If the metric value has changed more recently
than 30 seconds, then the data displays with a yellow background. The highlighted
background fades as the data ages.

You may select any cell in the cView table by clicking on it. To select multiple cells
or to de-select cells, press the CTRL key while clicking. You can also select a region
of cells by clicking on one of the cells and dragging the mouse while keeping the
mouse button depressed. To select an entire row of cells, click on the row's header.
Clicking on a row header causes the corresponding Noun to be selected in both the
directory tree and the iView. To clear all selections, press the Clear Selection button.
 Monitoring Performance Statistics 5-21

The oasomo Utility
By default, the rows of the cView are not sorted. To sort by a particular column,
click on the column's header. When the cView is sorted, the tool highlights the cor-
responding column header. Sort order is always descending.

As new Nouns are dynamically discovered and added to the directory tree, they
are not automatically added to the cView, even if it is currently displaying a new
Noun's class. To force the cView to display new Nouns, select Reload from the
cView popup menu.

Buttons and Checkboxes
This section describes other options in the EJB/ECO display.

New Chart Button The New Chart button activates whenever you select one or more
metrics in either the iView or the cView. When you press New Chart, the EJB/ECO
display launches a new Chart view and populates it with the selected metrics. To
make a new chart, you may select metrics from the iView, the cView or both.

Add to Chart Button The Add to Chart button activates if you have selected metrics
while one or more Charts are already active. Selecting Add to Chart adds the
selected metric to the existing chart. If there are more than one charts active, then a
dialog pops up that allows you to select the Chart to receive the new metrics.

For more information about charts, see “Displaying Charts” on page 5-23.

Clear Selection Button The Clear Selection button activates whenever you have
selected metrics. When you select Clear Selection, the tool de-selects all selected
metrics.

Constrain by iView Checkbox The Constrain by iView Checkbox allows you to limit or
filter the potentially large number of Nouns displayed in the cView. When the Con-
strain by iView checkbox is selected, the Nouns in the cView are limited (con-
strained) to only those that are descendants of the Noun that is currently selected in
the iView.

For example, if you are only interested in the methods for a particular EJB applica-
tion, then you can limit the cView to the application with the Constrain Checkbox.
To do this, display the desired application in the iView and select the Constrain by
iView Checkbox. Checking the box instructs the EJB/ECO display to fill the cView
with only those Nouns that descend from the selected application. Finally, select
“Method” in the cView popup menu.
5-22 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Sometimes, constraining produces an empty cView. For example, if you select the
Host class in the cView and then constrain the cView with a Method Noun, then
the cView will be empty because methods are never ancestors of hosts.

Figure 5–12 shows an example use of the Constrain by iView checkbox. The user
has selected the Method class in the cView and constrained the cView by the Bean
Class named Pumpkin/class2. The result is a cView that shows only those methods
contained by the Pumpkin/class2 Bean class.

When the user de-selects the Constrain by iView checkbox, the tool immediately
removes constraints from the cView and the cView displays all Nouns of the
selected Noun class.

Figure 5–12 Class View constrained by an instance view

Displaying Charts
You can create charts by selecting the New Chart button in the EJB/ECO display
tool bar. Charts graph one or more metrics over a moving time axis. The EJB/ECO
display updates all charts every three seconds.
 Monitoring Performance Statistics 5-23

The oasomo Utility
Figure 5–13 shows an example chart with two metrics. The bottom of the chart con-
tains a legend that displays the names of the chart's metrics alongside icons that
match the metric names to the curves in the chart display area. To see detailed infor-
mation about the charted Nouns click on a metric in the legend. The EJB/ECO dis-
play will then display the corresponding Noun in the iView and select the Noun in
the directory tree.

Figure 5–13 EJB/ECO display chart with two metrics

The t-axis (bottom axis) shows the current time of day. The y-axis (left-hand axis)
shows the range of metric values for the chart. Charts always use one y-axis and all
curves are mapped to it. This sometimes creates charts in which one or metrics dis-
tort the y-axis so that some metrics are not readable in the chart. In these situations,
you may create a new chart to separate the metrics. The top of the chart is labeled
with a t-axis that starts at 0 and increments every 30 seconds. The EJB/ECO display
draws a vertical bar through the chart at 30 second intervals.

Charts contain one control button, the Remove Metrics button. When you select the
Remove Metrics button, the EJB/ECO display shows a two column shuttle win-
dow. Use the shuttle controls to move metric names to the left or right column.
When you press the shuttle's OK button, the tool deletes all metrics in the left col-
umn of the shuttle and keeps all metrics listed in the right column. Deleted metrics
may not be re-displayed through the Remove Metrics button, but they may be
replaced using the Add to Chart button in the main window.

Zooming In and Out
You can zoom in by pressing and holding the Shift button while left-clicking the
mouse. You can zoom out by right-clicking the mouse.
5-24 Oracle Application Server Performance and Tuning Guide

The oasomo Utility
Noun Classes
Table 5–9 displays the available metrics for each Noun class:

For a list of terms used in this chapter, see “Terminology” on page 5-32.

Table 5–9 EJB/ECO Performance Display Noun classes and their metrics

Noun Class Metric Available Metrics

Site Hosts Number of hosts running EJBs.

EJB Applications Total number of EJB applications on all hosts.

EJB Bean Classes Total number of Bean Classes contained in all
applications on all hosts.

Host EJB Applications Number of EJB applications running on the host.

EJB Bean Classes Number of Bean Classes contained in all
applications on the host.

% User Time Current user CPU utilization.

% System Time Current system CPU utilization.

Swap Space Available swap space.

Free Memory Available physical memory.

System Calls Current System call rate.

Major Page Faults Major Page Fault rate.

Context Switches Thread context switch rate.

Application Host The name of the host machine running this
application.

PID The process ID number.

EJB Bean Classes Total number of EJB Bean Classes contained within
the application.

% CPU Current CPU utilization.

Heap Size Heap space used by the application process.

ORB Enqueues Current ORB enqueue rate.

Uptime Application uptime.

ORB Queue Length Current ORB queue length.
 Monitoring Performance Statistics 5-25

The oasomo Utility
Bean Class Host The name of the host machine running this
application.

PID The process ID number.

Application The name and PID of the application.

Methods Number of methods implemented by class

Completed Invocations Number of method invocations completed

Instances Number of currently active instances of the class

Active Invocations Number of method invocations currently active

Concurrency Limit Maximum allowed concurrency level for the bean

Method Host The name of the host machine running this
application.

PID The process ID number.

Applications The name and PID of the application.

Bean Class The bean’s class name.

Completed Invocations Number of completed method invocations.

Elapsed Service Time Total elapsed time spent during invocations of the
method.

Elapsed Wait Time Total time spent waiting in ORB queues by requests
for the method.

Note: The update interval cannot be changed for the EJB/ECO
display tool. The tool’s update interval is three seconds.

Table 5–9 EJB/ECO Performance Display Noun classes and their metrics

Noun Class Metric Available Metrics
5-26 Oracle Application Server Performance and Tuning Guide

The flexmon Utility
The flexmon Utility

Overview
This utility can be used for quick and easy monitoring of Oracle Application
Server. The flexmon utility is similar to the UNIX commands vmstat and iostat; all
three accept options, report statistics, and print them out to standard output.

The flexmon utility:

■ is text based

■ can be used for automated testing

■ provides access to any/all metrics that Oracle Application Server exports

■ has a configurable push interval

■ can be used to discover, list, and monitor metrics

■ associates data values with metric names in the output. Names can be short or
long.

Description of Command Line Interface
Before running flexmon, the environment must be properly set up. Therefore, the
CLASSPATH must include:

■ $ORACLE_HOME/orb/4.0/classes/yoj.jar (Unix only)

■ $ORACLE_HOME/orb/4.0/classes/dms.jar (Unix only)

■ $ORACLE_HOME/orb/classes/yoj.jar (Windows NT only)

■ $ORACLE_HOME/orb/classes/dms.jar (Windows NT only).

A particular command line can request to list the metric directory or to actually
monitor the metrics. If monitoring, then the command line contains a space-sepa-
rated list of metrics. It is possible to specify a push-interval and/or count by preced-
ing the subscription with a '-i' flag for interval and/or a '-c' flag to specify a count.
The flags may be used together.

Since flexmon is a java based utility, it must be run with the java interpreter.

Syntax
java flexmon [-listmetrics] [-d delimiter] [-s | -t]
 [-i interval] [-c count] [subscriptions...] [-help]
 Monitoring Performance Statistics 5-27

The flexmon Utility
Arguments

Usage Examples

Example 5–1 Listing all available metrics

This example demonstrates listing all available metrics. Note that only a part of the
output is given here.

% java flexmon -listmetrics
/
/myNode/
/myNode/otsfacsrv:6558/
/myNode/otsfacsrv:6558/DMS_Internal/
/myNode/otsfacsrv:6558/DMS_Internal/Measurement/
...
/myNode/Oraweb_Lsnr_Dispatcher:6567/Dispatcher/Cartridges/HelloWorld/hwcart/
...
/myNode/Oraweb_Lsnr_Dispatcher:6567/uptime
/myNode/Oraweb_Lsnr_Dispatcher:6567/cputime
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize

Argument Description

-listmetrics Displays a list of all metrics.

-d delimiter Specifies a delimiter character to be used as an alternate to the
slash (/) character used to separate subcomponents of a metric
or Noun.

-s Displays the shortened name for metrics.

-t Display only metric values (terse display).

-i interval Specifies the interval, in seconds, between display updates. If no
interval is given, 1 is used.

-c count Specifies the number of intervals to display. If no count is given,
only a break (^C) will stop flexmon.

subscriptions... A list of one or more Nouns and metrics, separated by spaces, to
view. To list all of the metrics for a Noun, specify the Noun’s
name.

-help Displays the syntax of the flexmon utility.
5-28 Oracle Application Server Performance and Tuning Guide

The flexmon Utility
Example 5–2 Displaying more than one metric

% java flexmon /myNode/Oraweb_Lsnr_Dispatcher:6567/cputime
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize
Thu Jul 15 10:09:04 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/cputime 16140 msecs
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3024 kbytes
Thu Jul 15 10:09:04 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/cputime 16140 msecs
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3088 kbytes
^C

Example 5–3 Displaying metrics in abbreviated formats

The -s argument can be used to display a shortened name (without the path infor-
mation) for each metric. Since we refer to a Noun in the syntax, all metrics under
the Noun are displayed.

% java flexmon -s /myNode/otsfacsrv:6558/
Thu Jul 15 10:13:32 PDT 1999
uptime 7903 secs
cputime 12820 msecs
heapsize 2464 kbytes
Thu Jul 15 10:13:33 PDT 1999
uptime 7903 secs
cputime 12820 msecs
heapsize 2464 kbytes
^C

The -t argument only displays the metric values. The metric names are not dis-
played.

% java flexmon -t /myNode/otsfacsrv:6558/
7964 13010 2480
7965 13060 2528
7966 13070 2536
^C
 Monitoring Performance Statistics 5-29

The flexmon Utility
Example 5–4 Changing the update interval

This example displays the updated metric value every 10 seconds.

% java flexmon -i 10 /myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize
Thu Jul 15 10:19:25 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3088 kbytes
Thu Jul 15 10:19:35 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3152 kbytes
Thu Jul 15 10:19:45 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3152 kbytes
^C

Example 5–5 Displaying a fixed number of updates

This example only displays the metric 3 times. After the three updates, the program
quits. Note that execution was not broken in this example with a break character.

% java flexmon -c 3 /myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize
Thu Jul 15 10:21:17 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3152 kbytes
Thu Jul 15 10:21:17 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3216 kbytes
Thu Jul 15 10:21:18 PDT 1999
/myNode/Oraweb_Lsnr_Dispatcher:6567/heapsize 3216 kbytes

Example 5–6 Displaying a metric without delimiters

% java flexmon
/myNode/Oraweb_Lsnr_Dispatcher:6567/Dispatcher/Cartridges/HelloWorld
/hwcart/
Unknown metric
/myNode/Oraweb_Lsnr_Dispatcher:6567/Dispatcher/Cartridges/HelloWorld/hwcart/

This example fails because the Noun ‘HelloWorld/hwcart’ embeds a slash in its
name. This causes confusion between slashes that are delimiters and slashes that
are part of a Noun names.

This is corrected, using a delimiter, in Example 5–7.
5-30 Oracle Application Server Performance and Tuning Guide

The flexmon Utility
Example 5–7 Displaying a metric with delimiters

It is important to chose a unique delimiter that will not create confusion between
the metric list or your operating system. Plus signs (+) and comas (,) are good
choices in most cases.

% java flexmon -listmetrics -d +
...
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld/hwcart+
...

% java flexmon -d +
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld
/hwcart+
Thu Jul 15 09:34:57 PDT 1999
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld/hwcart+Tota
lRequestWaitTime 0 msecs
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld/hwcart+Tota
lRequests 0 Count
Thu Jul 15 09:34:57 PDT 1999
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld/hwcart+Tota
lRequestWaitTime 0 msecs
+myNode+Oraweb_Lsnr_Dispatcher:6572+Dispatcher+Cartridges+HelloWorld/hwcart+Tota
lRequests 0 Count
^C
 Monitoring Performance Statistics 5-31

Terminology
Terminology
The utilities described in this chapter use the following terminology:

Term Definition

Application Noun An application noun is a single process that runs an EJB or ECO
application. oasomo labels each application noun with the deployment
name of the corresponding application.

Bean Class Noun A Bean Class Noun corresponds to a single Java class hosted by a
single EJB application. If several different applications contain the same
Java class or if several different instances of a single application are
running, then each occurrence of the Java class is represented by a
different Bean Class Noun. However, if a single application contains
multiple beans all of the same class, then they are all represented with
the same Bean Class Noun.

A Bean Class is named with the name of the EJB application followed
by a '/' character followed by the base name (.i.e., not the full path
name) of the Java class of the EJB. For example, the Bean Class Noun
corresponding to the Stack class within the 4.0.8 example EJB
application known as StackServer is named “StackServer/Stack”.

Chart A performance metric display that shows metric values over time.

Directory A hierarchical collection of Nouns and metrics that may be monitored
in Oracle Application Server.

Host Noun An individual host (node) within an Oracle Application Server site.
Host Nouns contain metrics that may vary depending on the platform
due to operating system differences.

Method Noun A Method Noun corresponds to a single method within a particular
EJB Noun. Metrics for methods include count of invocations, time
elapsed during invocations of the method, and time spent waiting in
ORB queues before invocations. Method metrics are summed over all
invocations of all instances of the EJB. oasomo’s EJB/ECO Performance
Display tool does not distinguish between instances (individual beans)
within an EJB class when calculating method metrics.

Metric A performance statistic collected for a Noun, such as uptime or queue
length.

Metric List A list of statistics available for collection.

Noun A component of an Oracle Application Server site. Examples of a Noun
are component, object, cartridge, class, bean, process, piece-of-code,
computer, process, etc.
5-32 Oracle Application Server Performance and Tuning Guide

Terminology
Push Interval The interval in seconds wherein an object (a Spy) maintains a
publication of available statistics and sends the requested statistics to
the subscriber.

Site Noun An entire Oracle Application Server site (i.e. website40). There is
always exactly one site Noun in the directory tree.

Spy A CORBA object that collects data, accepts subscriptions from client
monitors, samples data and pushes data. Each Oracle Application
Server process contains a Spy.

Subscriber Any program that collects performance statistics from a Spy. For
example, the flexmon utility is a subscriber.

Subscription A list of metrics requested by a subscriber.

Tiered Table A Tiered table allows you to see more than one level, or tier, of the
oasomo directory at one time. A Tiered Table shows a selected Noun
and its metric values and its children and their metric values. A Tiered
Table contains a top row showing the selected Noun’s metrics. The
bottom rows show the metrics for Nouns contained within the selected
Noun.

Term Definition
 Monitoring Performance Statistics 5-33

Terminology
5-34 Oracle Application Server Performance and Tuning Guide

Operating System T
A

Operating System Tuning

This chapter provides performance tips for your operating system and your hard-
ware. It also includes a summary of the performance benefits of Solaris 2.6. For
more information about tuning and performance for Solaris, see Adrian Cockcroft’s
Sun Performance and Tuning, 2nd Edition, 1998.

Contents
■ Monitoring Processor Use

■ Harnessing the Benefits of Solaris 2.6

Monitoring Processor Use
To determine process utilization, you should gather CPU statistics. You should also
monitor system scalability by adding users and increasing the system workload.
Use the sar (System Activity Reporter) and mpstat utilities to monitor process use.

Using the sar Utility
You can use sar to sample cumulative activity counters in the operating system at
specified intervals.

Report CPU Utilization
To determine process use, use the following sar command:

$ sar -u 5 5

This command will sample CPU usage five times, in five second intervals.
uning A-1

Monitoring Processor Use
You will get a listing similar to this:

$ sar -u 5 5
SunOS dummy-sun 5.5.1 Generic_103640-03 sun4u 03/02/99

14:53:48 %usr %sys %wio %idle
14:53:53 0 0 0 100
14:53:58 1 0 0 99
14:54:03 0 0 0 100
14:54:08 3 3 0 93
14:54:13 0 0 0 100

Average 1 1 0 98

The sar command (-u option) provides the following statistics:

Using the mpstat Utility
The mpstat utility is similar to the sar command in that the first argument to
mpstat is the polling interval time in seconds. The second argument to mpstat is
the number of iterations.

The mpstat command:

$ mpstat 1 3

reports three processor statistics in one second intervals. For example:

$ mpstat 1 3
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 1 0 0 268 64 148 11 0 0 0 33 3 5 0 92
 0 5 0 0 250 49 157 13 0 1 0 357 2 0 0 98
 0 0 0 0 247 47 134 8 0 0 0 326 0 0 0 100

Table 5–10 CPU statistics, as reported by the sar utility

CPU Statistics Description

%usr percentage that the processor is running in user time

%sys percentage of processes running in system time

%wio percentage the processor spends waiting on I/O requests

%idle percentage that the processor is idle
A-2 Oracle Application Server Performance and Tuning Guide

Harnessing the Benefits of Solaris 2.6
The mpstat utility reports the statistics per processor, as shown in the following
table:

Harnessing the Benefits of Solaris 2.6
Sun Microsystems updates Solaris operating system components regularly, such as
the Transmission Control Protocol/Internet Protocol (TCP/IP) subsystem, that are
heavily used by Oracle Application Server. Make sure you have installed the latest
patches.

Also available from Sun Microsystems is the Solaris Internet Server Supplement,
which is a set of add-on modules specially tailored for Solaris systems that host
Web sites.

Table 5–11 CPU statistics, as reported by the mpstat utility

Statistic Description

CPU processor ID

minf number of minor faults

mjf number of major faults

xcal number of inter-processor cross calls

Intr number of interrupts

ithr number of interrupts as threads

csw number of context switches

icsw number of involuntary context switches

migr number of thread migrations to another processor

smtx number of spins for a mutex lock, which means the lock was not obtained on
the first attempt

srw number of spins on reader-writer lock, which means the lock was not
obtained on the first attempt

syscl number of system calls

usr percentage that the processor spent in user time

sys percentage that the processor spent in system time

wt percentage that the processor spent in wait time (waiting on an event)

idl percentage that the processor spent in idle time
Operating System Tuning A-3

Harnessing the Benefits of Solaris 2.6
Oracle recommends using Solaris 2.6, which was a performance upgrade designed
to improve network traffic. There were several optimizations made which improve
network performance.

Processor Sets
You can create processor sets that bind processes to a set of processors, as opposed
to a single processor. There are two types of processor sets, user-created processor
sets, and system-created processor sets.

User-created User-created processor sets can be managed using the psrset com-
mand, or the pset_create() system call. Processors that are assigned to user-created
processor sets only service light weight processes (LWPs) that are bound to that par-
ticular processor set. However, system-created processor sets can service other
LWPs. System-created processor sets do not always exist on a particular system.

System-created System-created processor sets are useful when certain processors
communicate more efficiently together than they do with other processors. Sys-
tem-created processor sets cannot be modified, nor removed, but you can bind pro-
cesses to them. Processor sets are used to improve CPU use by binding a certain set
of processes, such as the Oracle listeners or cartridge processes, to processor sets.
Processor sets help reduce processor contention between the listener processes and
the cartridge processes.

Tuning I/O
Direct input/output (I/O) bypasses the UNIX file system cache and copies the file
system-based file data directly into user space. Direct I/O on file systems is similar
to raw devices. Solaris 2.6 allows direct I/O to be performed using the direc-
tio() system call. An application can use the directio() system call to perform
direct I/O processing on a file. To control whether or not direct I/O to the file sys-
tem is forced, use the mount command options: noforcedirectio and force-
directio .

Use direct I/O to:

■ improve large sequential I/O performance

■ improve performance of large files during file transfers

■ eliminate extra buffer copies and file system cache maintenance

■ reduce CPU consumption
A-4 Oracle Application Server Performance and Tuning Guide

Harnessing the Benefits of Solaris 2.6
Monitoring TCP Statistics
Solaris 2.6 uses a new TCP/IP statistic, known as tcpListenDrop , which counts
the number of times that a connection is dropped because of a full queue. Use the
Solaris netstat utility (-s option) to report networking statistics, including tcpLis-
tenDrop .

Applications increase the size of the queue by specifying higher values for the back-
log to the listen() call. Set the maximum backlog size by adjusting the value of
the ndd on the tcp_conn_req_max parameter. See Table 5–12 for a list of TCP
parameters and their recommended values.

In the case of an initial handshake, an incoming packet is sent with only the Syn-
chronized Sequence Numbers (SYN) flag set. When a packet is sent, the server
makes an entry in the listen queue, and then sends another packet to acknowledge
the first packet. It also includes a SYN flag to reciprocate the synchronization of the
sequence number in the opposite direction. The client then sends another packet to
acknowledge the second SYN, and the server process is then scheduled to return
from the accept() call, subsequently moving the connection from the listen
queue to the active connection list.

If you send an initial SYN packet, but it is not acknowledged with a second SYN
packet, it will eventually time out, and the server will discard the client from the lis-
ten queue. The listen queue becomes full when a server has several SYN packets
that do not contain valid source addresses. This causes new connections to wait for
old connections to be discarded from the queue.

Solaris 2.6 corrects this problem by using two separate queues, as opposed to one.
In addition, there are two new TCP tunable parameters, tcp_conn_req_max_q
and tcp_conn_req_max_q0 , which specify the maximum number of completed
connections that are waiting to return from an accept() call, and the maximum
number of incomplete handshake connections, respectively.

Use the netstat utility (-s option) to monitor TCP statistics, and to determine con-
nection drop activity, as well as the type of drops, for example:

tcpListenDrop=25642 tcpListenDropQ0=0

tcpHalfOpenDrop=0

The tcpHalfOpenDrop statistic is incriminated when an in-doubt connection is
dropped. The default value for tcp_conn_rq_max_q is 128, and the default value
for tcp_conn_req_max_q0 is 1024. The default values are typically sufficient and
should not require tuning. However, by examining the statistics with the netstat
utility, you can determine if the parameters need to be adjusted.
Operating System Tuning A-5

Harnessing the Benefits of Solaris 2.6
TCP Parameters
The following table lists TCP parameters introduced with Solaris 2.6 and their rec-
ommended values:

To set these TCP parameters, use these commands:

$ su root
/usr/sbin/ndd -set /dev/tcp parameter value

where parameter is a parameter listed in the first column of the table above, and
value is a value listed in the second column.

For more information about these parameters and other TCP tuning for improving
performance, see Adrian Cockcroft’s Sun Performance and Tuning, 2nd Edition, 1998.

Improving Startup Latency
TCP implementations use a congestion window that limits the number of packets
that can be sent before an acknowledgment. This is used to improve the startup
latency and also helps avoid overloading the network. The TCP standard specifies
that the initial congestion window should consist of one packet, then double upon
each successive acknowledgment. This causes exponential growth and may not nec-
essarily be ideal for HTTP servers, which typically send small batches of packets.

Solaris 2.6 provides a tcp_slow_start_intital parameter that can be used to
double the congestion window from its default of 1 to 2. This improves transmis-
sion throughput of small batch sizes.

Table 5–12 TCP parameters (Solaris only)

Parameter Recommended Value

tcp_conn_req_max_q 1024

tcp_conn_req_max_q0 1024

tcp_close_wait_interval 60000

tcp_rexmit_interval_min 1500

tcp_xmit_hiwat 65536

tcp_xmit_lowat 24576

tcp_recv_hiwat 65536

tcp_conn_hash_size 256

tcp_slow_start_initial 2
A-6 Oracle Application Server Performance and Tuning Guide

Harnessing the Benefits of Solaris 2.6
Contrary to Solaris, NT version 4 does not immediately acknowledge receipt of a
packet upon connection-start, which results in an increase in the connection startup
latency. NT version 4 does, however, immediately acknowledge if two packets are
sent. The difference between the NT and the Solaris implementation causes perfor-
mance discrepancies, or higher response times, when NT clients are used to con-
nect to Solaris servers with a high-speed or LAN-based network. To correct this, set
the congestion window on Solaris to 2, using tcp_slow_start_initial=2 .

Reducing Connection Backlog
In Solaris 2.6, the tcp_conn_hash_size parameter can be set to help address con-
nection backlog. During high connections rates, TCP data structure kernel lookups
can be expensive (memory consuming) and can slow down the server. Increasing
the size of the hash table improves lookup efficiency. The default for tcp_conn_
hash_size is 256. This parameter must be a power of 2, and can bet set in the
/etc/system kernel configuration file.

Monitoring Network Traffic
Use the netstat utility to monitor the overall network traffic, as well as the network
traffic for a given interface using the (-k) option. Solaris 2.6 has several new
counters that report byte count statistics. The following table lists the netstat utility
counter names and descriptions:

Table 5–13 Monitoring network traffic using the netstat utility

Utility Counter Name Description

tcpListenDrop reports how many connections were dropped because of net-
work traffic

rbytes read byte count

obytes output byte count

multircv multicast receive

multixmt transmit count

brdcstrcv broadcast byte count

brdcstxmt broadcast transmit count

norcvbuf buffer allocation failure count

noxmtbuf buffer allocation failure count
Operating System Tuning A-7

Harnessing the Benefits of Solaris 2.6
The following table lists additional Solaris 2.6 network enhancements that increase
network performance:

Table 5–14 Solaris 2.6 Network enhancements

Network Enhancement Description

Kernel Sockets Enables higher socket performance in addition to the TCP/IP
STREAMS

TCP Large Windows Allows TCP sessions to transmit larger packet sizes between
64K-1G

Zero Copy TCP/Hard-
ware Checksum

Avoids data copy, and uses hardware checksum logic
A-8 Oracle Application Server Performance and Tuning Guide

Index
A
adapter, 1-13
Application Noun, 5-32
applications

database connectivity, 2-1
designing, 2-1
Enterprise Java Beans

See EJBs invoked by JServlets
JServlet

See JServlet applications
metrics, 5-3
PL/SQL

See PL/SQL applications
architecture, 1-2

Oracle Application Server, 1-2
Authentication Server, 4-3

modes, 4-18
automatic redirection, 4-6

B
Bean Class Noun, 5-32

C
cartridge metrics, 5-4
cartridges

definition, 1-14
introduction, 1-14
tuning, 4-10

channel bandwidth, 3-8
charts, 5-15, 5-23
class view

See cView
connections per client, minimizing, A-1
Constrain by iView, 5-22
CPU

insufficient, 3-7
statistics, A-3

cView, 5-18, 5-20
columns, 5-21
popup menu, 5-20

D
database

schema, 2-8
using for authentication, 4-3

databases
multiple, accessing, 2-2

demand rate, 1-6
development, 2-1
device bandwidth, 3-8
device latency, 3-8
Directory, 5-32
directory rescans, minimizing, 4-8
dispatcher, 1-13, 4-13
DNS resolution, turning off, 4-4

E
ECO metrics, 5-17
EJB metrics, 5-17
EJBs invoked by JServlets, 2-19

database connectivity, 2-19, 2-23
example

constructor, 2-20
 Index-1

database object, 2-24
database schema, 2-8
destroy(), 2-26
discussion, 2-19, 2-24
doGet(), 2-26
ejbActivate(), 2-22
ejbCreate(), 2-21
ejbPassivate(), 2-22
ejbRemove(), 2-21
get EJB instance, 2-27
getDBConnection(), 2-23
getSampleData(), 2-22
init(), 2-25
invoke EJB method, 2-27
SQLException, catching, 2-23

state, 2-19
stateless, 2-19

error files, monitoring, 4-17
evaluating performance

criteria, 1-2
expectations for tuning, 1-8

F
file descriptors, 4-2
flexmon, 5-27

abbreviating metric names, 5-29
arguments, 5-28
delimiters, 5-31
interval, 5-30
listing available metrics, 5-28
multiple metrics, 5-29
overview, 5-27
running, 5-27
syntax, 5-27

forms
network, 4-4, 4-7, 4-8, 4-9
server, 4-8, 4-9

G
goals for tuning, 1-8
graphics, minimizing, A-1

H
hardware

recommended configuration, A-1
requirements, 3-2

Host Noun, 5-32
HTTP connections per client, minimizing, A-1
HTTP listener layer, 1-13
HTTP server, 1-13

I
I/O

insufficient, 3-8
input/output tuning, A-4
installation

Authentication Server, 4-3
instance view

See iView
iView, 5-18, 5-19

constrain by, 5-22

J
JDBC drivers, 2-1
JServlet applications, 2-2

sessions, 2-8
configuration, 2-9

SingleThreadModel interface, 2-2
spawning sub-threads, 2-2
static objects, 2-2
threading models, 2-2

JTS database driver, 2-1

L
latency, 1-2
listeners, 1-13

listener layer, 1-13
tuning, 4-4

log files, monitoring, 4-17
logging service, tuning, 4-15

M
memory
Index-2

insufficient, 3-7
message rate, 3-9
Method Noun, 5-32
Metric, 5-32
Metric List, 5-32
metrics, 5-3

application, 5-3
cartridge, 5-4
CORBA_Objects

interface, 5-12
methods, 5-12

dispatcher, 5-14
ECO, 5-17
EJB, 5-17
host, 5-14
internal measurement, 5-13
internal process, 5-13
monitoring, 5-1
oasomo, 5-8
ORB queue, 5-14
process, 5-11
queue, 5-5, 5-15

minimizing connections per client, A-1
monitoring, 5-1

error files, 4-17
log files, 4-17
processes, A-1

mpstat utility, A-2

N
netstat utility, A-5
network

bandwidth, 3-9
constraints, 3-9
form, 4-4, 4-7, 4-9

network form, 4-4, 4-8
Noun, 5-3, 5-32

classes, 5-25

O
oasomo

adding metrics, 5-8
application branch, 5-3

application metrics, 5-3
blank fields, 5-7, 5-10
catridges

metrics, 5-4
charting metric values, 5-15
charts, 5-15
directory tree, 5-7
Display Long Names option, 5-7
EJB/ECO Performance Display, 5-7
hostname branch, 5-3
menu bar, 5-7
metric list, 5-8
overview, 5-2
queue metrics, 5-5
Set Interval button, 5-9
Show Data as Rate option, 5-7
sorting metrics, 5-8, 5-9
starting, 5-2
status messages, 5-8
tiered table, 5-9
tool tips, 5-8
tutorial, 5-3
utilities

oasomo, 5-1
walk through, 5-3
window parts, 5-6

OCI database driver, 2-1
operating system

tuning, 3-9
Oracle Application Server layer, 1-14

P
paging, 3-7
performance

criteria for evaluating, 1-2
evaluating, 1-9

PL/SQL applications, 2-29
database access descriptors, 2-29
nested tables, 2-29

priority levels, 4-12
processes

maximum number of, 3-9
monitoring, A-1
per user, allowing maximum (Solaris), 4-4
 Index-3

processor sets, A-4
Push Interval, 5-33

Q
queue metrics, 5-5

R
recommended hardware configuration, A-1
redirection

configuring automatic (Oracle Web
Listener), 4-6

request
latency, 1-2
throughput, 1-2

rescans, directory, minimizing, 4-8
resource

adding, 1-5
response time, 1-4

S
sar utility, A-1
scalability, 1-2
server form, 4-8, 4-9
service time, 1-3, 1-4
sessions, JServlet, 2-8

configuration, 2-9
example

configuration, 2-9
data object, 2-19
destroy(), 2-11
doGet(), 2-11
getDBConnection(), 2-16
getPerfSampleData(), 2-15
init(), 2-10
invalidate() call, 2-12
model, 2-9
retrieving from session manager, 2-13
storing to session manager, 2-13
updatePerfSampleData(), 2-16

sesssions, JServlet
example

database schema, 2-8

SingleThreadModel
example

database schema, 2-8
destroy(), 2-5
discussion, 2-3
doGet(), 2-5
getDBConnection(), 2-6
init(), 2-4
invoking, 2-8
SQLException, catching, 2-3

interface, 2-2
Site Noun, 5-33
spawning sub-threads, 2-2
Spy, 5-33
SQLException, catching, 2-3, 2-23
static objects, 2-2
statistics

See metrics
Subscriber, 5-33
Subscription, 5-33
swapping, 3-7

T
TCP settings, Solaris, A-6
threads

spawning, 2-2
throughput, 1-2, 1-4
Tiered Table, 5-33
transactions

distributed, 2-2
programmatic, 2-1

Transmission Control Protocol, see TCP
transmission time, 3-9
tuning

cartridges, 4-10
expectations, 1-8
form

utilities, 4-11
goals, 1-8
input/output, A-4
listener, general, 4-4
logging service, 4-15
operating system, 3-9
Oracle Web Listener, 4-4
Index-4

U
URL redirection, 4-6
utilities

flexmon, 5-27
mpstat, A-2
netstat, A-5
sar, A-1
tuning form, 4-11

V
virtual path manager, 1-13

W
wait time, 1-3, 1-4
 Index-5

Index-6

	1 Performance Overview
	Performance Terms
	Oracle Application Server Overview
	What is Performance Tuning?
	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance
	Performance Methodology
	Architecture
	Distributing Load Among Multiple Nodes
	Distributed versus Single-Node Configurations
	New Performance Features in Oracle Application Ser...

	2 Designing Performant Applications
	Java-Based Applications
	PL/SQL Applications

	3 Sizing and Configuration
	Installation Requirements
	Sizing your Hardware and Resources
	Determining User Population
	Determining CPU Requirements
	Determining Memory Requirements
	Performance Factors

	4 Tuning Oracle Application Server Components and ...
	Tuning Processes
	Tuning Listeners
	Tuning Cartridges
	Tuning Logging
	Tuning Security
	Tuning Operating System and Network

	5 Monitoring Performance Statistics
	The oasomo Utility
	The flexmon Utility
	Terminology

	A Operating System Tuning
	Monitoring Processor Use
	Harnessing the Benefits of Solaris 2.6

	Index

